研究生: |
林琦峰 Lin, C. F. |
---|---|
論文名稱: |
條紋式塗佈之基礎分析 Fundamental Study of Narrow stripe coating |
指導教授: |
汪上曉
Wong, David S. H. 劉大佼 |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 147 |
中文關鍵詞: | 窄膜塗佈 、低黏度牛頓流體 、雷諾數 、流場觀測 、數值解 、狹縫式塗佈 |
外文關鍵詞: | narrow stripe coating, low-viscosity Newtonian fluids, slot die coating, coating bead, numerical solution, flow visualization |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之主題為條紋塗佈之分析,乃藉由狹縫式模具進行條紋塗佈,所研究的流道寬度範圍在1mm~10cm之間,塗液為低黏度(μ<50mPa□s)之牛頓流體,同時藉由實驗及理論兩方面探討影響成膜寬度之成因,並以流場觀測及數值模擬分析其缺陷產生機制。
首先比較一般狹縫式塗佈與條紋塗佈的差異,實驗結果顯示,窄膜塗佈具有較高之塗速上限,但其膜寬變化與寬膜塗佈相近,相較之下,膜寬變化對窄膜塗佈的影響相當明顯,因此本研究由多項變因分析其對於窄膜塗佈的影響,結果顯示,塗液之表面張力、黏滯力及狹縫出口處的慣性力均與成膜寬度相關,經由無因次分析及步進回歸,可得一無因次膜厚對Re*及Bo之關係式,由此可預測條紋塗佈之成膜寬度。本研究尚藉由流場觀測及數值模擬分析條紋塗佈的缺陷機制,同時探討寬膜與窄膜塗佈二者於速度上限有所差異的原因。
為了避免塗佈液珠之下游彎月面爬上模具斜邊而導致渦流發生,並因塗液揮發變質而導致斷膜與刮膜缺陷,本研究藉由套裝軟體FLOW-3D進行理論模擬,分析諸多變因對潤溼線位置的影響,其結果顯示,增加模唇邊角之角度或使塗液在模具表面之接觸角增大均可助於避免液珠之下游潤溼線爬上模具,且若對上述兩項設計進行適當調整,能助於進一步提高塗速上限。
The fluid mechanics of narrow stripe coating for low-viscosity Newtonian solutions were investigated. It was found that the coating solution will expand laterally after emanating from the slot die channel at low coating speeds. As coating speed increases, the stripe width will contract until it is close to the slot channel width, then coating failure would appear. Three slot channel widths were tested, coating failure such as ribbing appears at high speeds for two larger slot channel widths. However, for the smallest channel width, the critical speed for coating failure to appear is much higher and the coating failure is not ribbing but the narrow stripe breaks periodically. The effects of each parameter on the coating width variation were examined and a universal correlation which involves modified Reynolds and Bond number was established to predict the coating width.
A flow visualization technique was applied to observe the mechanism on how a narrow stripe breaks at high coating speeds. 2-D and 3-D numerical simulations on coating flows were examined for a better understanding on the stability of narrow stripe coating.
For certain operating conditions, the downstream contact line of the coating bead may climb on the die shoulder, which may cause vortices near the downstream region. Since most of the coating solutions in industry are volatile, vortices in the flow fields should be avoided to prevent the coating solutions from degradation. Otherwise, some coating defects such as bead-break in stripe coating or rivulet in conventional slot-die coating would take place.
To avoid the contact lines from climbing on the die shoulder, many factors such as viscosity of the coating solutions, film thickness, and die geometry were tested with software package FLOW-3D. Among all the factors, designing the dies by adopting smaller angles at the die edge or by increasing the contact angles of the coating solutions on the die can effectively pin the positions of the downstream contact lines at the die edge, and suppress the formations of vortices as well. Besides, the stability of the coating beads was also analyzed. With appropriate adjustments, higher coating speeds can be reached by the use of the newly-designed slot die.
[1]. Beguin, A.E., “Method of Coating Strip Material.”, US Patent 2,681,294 (1954).
[2]. Bower, C.L., Simister E.A., Bonnist E., Paul K., Pightling N. and Blake, T.D., “Continuous Coating of Discrete Areas of a Flexible Web.”, AIChE J., 53, 1644 (2007).
[3]. Brethour, J., “Simulation of Viscoelastic Coating Flows with a Volume-of-fluid Technique.”, Proceedings of the 6th European Coating Symposium (2005).
[4]. Bird, R.B., Stewart, W.E. and Lightfoot, E.N., “Transport Phenomena.” John Wiley & Sons:New York (1960).
[5]. Chang, H.M., Chang, Y.R., Lin, C.F., and Liu, T.J., “Comparison of Vertical and Horizontal Slot Die Coatings.” Polym Eng Sci, 47, 1927 (2007).
[6]. Chang, Y.R., et al., “Three Minimum Wet Thickness Regions of Slot Die Coating.”, J. Colloid & Inter. Sci., 308, 222 (2007).
[7]. Chu, W.B., Yang, J.W., Wang, Y.C., Liu, T.J., Tiu, C. and Guo, J., “The Effect of Inorganic Particles on Slot Die Coating of Poly(Vinyl Alcohol) Solutions.”, J. Colloid Interface Sci., 297, 215 (2006).
[8]. Cohen, E. and Gutoff E., “Modern Coating and Drying Technology.” New York: VCH Publisher (1992).
[9]. Cohen, E.D. and Gutoff, E.B., “Coating and Drying Defects.”, Wiley Interscience, New York (1995).
[10]. Dobroth, T. and Erwin, L., “Causes of Edge Beads in Cast Films.” Polym Eng Sci, 26, 462 (1986).
[11]. Gutoff, E.B. and Kendrick, C.E., “Low Flow Limits of Coatability on a Slide Coater.”, AIChE J., 33, 141 (1987).
[12]. Gibbs, J.W., “Scientific Papers of J. Willard Gibbs. Volume I Thermodynamics.”, New York: Dover Publications (1961).
[13]. Gutoff, E.B. and Kendrick, C.E., “Dynamic Contact Angles.”, AIChE J., 28, 459 (1982).
[14]. Hens, J. and Boiy, L., “Operation of the Bead of a Pre-Metered Coating Device.”, Chem. Eng. Sci., 41, 1827 (1986).
[15]. Higgins, B.G. and Scriven, L.E., “Capillary Pressure and Viscous Pressure Drop Set Bounds on Coating Bead Operability.” Chem. Eng. Sci., 35, 673 (1980).
[16]. Hirt, C.W. and Nicols, B.D., “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries.”, J. Comp. Phys., 39, 201 (1981).
[17]. Hirt, C.W., et al., “Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of Fluid Technique.”, Proceedings of 50th Annual Conference of the Society for Imaging and Science Technology (1997).
[18]. Hirt, C.W., “Direct Computation of Dynamic Contact Angles and Contact Lines.”, ECC99 Coating Conference (1999).
[19]. Hisahiro, I., Masao, D., Takeharu, I., Masaaki, T., and Kazuo, Y., “2D Flow Analysis of Film Casting Process.” Journal of the Society of Rheology, 31, 3, 149 (2005).
[20]. Hisahiro, I., Masao, D., Takeharu, I., Masaaki, T., and Kazuo, Y., “A Model of Neck-In Phenomena in Film Casting Process.”, Journal of the Society of Rheology, 31, 3, 157 (2005).
[21]. Huppert, H.E., “The Propagation of Two-Dimensional and Axisymmetric Viscous Gravity Currents Over a Rigid Horizontal Surface.” J. Fluid Mech., 121, 43 (1982).
[22]. Kamikihara, N. and Watanabe, M., “Stripe Coating Applicator and Method.”, United States Patent, 6,344,088 (2002).
[23]. Kistler, S.F., “The Fluid Mechanics of Curtain Coating and Related Viscous Free Surface Flows with Contact Lines.”, Ph.D. Thesis, University of Minnesota, Minneapolis (1984).
[24]. Kistler, S.F. and Schweizer, P.M.(Eds.), “Liquid Film Coating.”, Chapman & Hall, London (1997).
[25]. KoKubo, S., Yoshikawa, T., Osano, N., ”Method of Forming Pattern and Method for Manufacturing Color Filter.”Japan Patent, 2,003,344,642 (2003).
[26]. Landau, L. and Levich, B., “Dragging of a Liquid by a Moving Plate.”, Acta Physicochim. URSS, 17, 42 (1942).
[27]. Lee, K.Y., Liu, L.D. and Liu, T. J., “Minimum Wet Thickness of Extrusion Slot Coating.” Chem. Eng. Sci., 47, 1703 (1992).
[28]. Lin, F. H., et al., “Experimental Study on Tensioned-Web Slot Coating”, Polym. Eng. Sci., 47, 841 (2007).
[29]. Liu, T.J. and Yu, Y.W., “Apparatus and Method for Forming a Coating Layer of Multiple Stripes.” United States Patent, 6,159,544 (2000).
[30]. Liu, T.J. and Yu, Y.W., “Die Set for Preparing ABCABC Multiple-Stripe Coating.” United States Patent, 6,423,140 B1 (2002).
[31]. Maier, G.W. and Brown, O.D., “Die Coating Apparatus with Surface Covering.”, U.S. Patent 5,759,274 (1998).
[32]. Madou, M., “Fundamentals of Microfabrication.” Boca Raton:New York (1997).
[33]. Middleman, S., “An Introduction to Fluid Dynamics.” John Wiley & Sons,Inc., p272 (1998).
[34]. Milbourn, T.M. and Barth, J.J., “Method of Applying Discrete Coating Patches on a Moving Web.” United States Patent, 5,360,629 (1994).
[35]. Nadim, M., “An Introduction to Microelectromechanical Systems Engineering.” Artech House Lodon (2000).
[36]. Newton, C.M., “Bonding of Thermoplastic Sheet Material to Roughened Substrates.” United States Patent, 5,114,514 (1992).
[37]. Ning, C.Y., Tsai, C.C. and Liu, T.J., “The Effect of Polymer Additives on Extrusion Slot Coating.” Chemical Engineering Science, 51, 3289 (1996).
[38]. O’Brien, G., “Beveled Edge Metered Bead Extrusion Coating Apparatus.”, U.S. Patent 4,445,458 (1984).
[39]. Oi, R., “Production of Color Filter.” Japan Patent, 05-142407 (1993).
[40]. Perry, R.H., Green, D.W. and Maloney, J.O., “Perry's Chemical Engineers Handbook.” McGraw-Hill:New York (1984).
[41]. Redon, C., Brouchard-Wyart, F., Rondelez, F., “Dynamics of Dewetting.”, Phys. Rev. Lett., 66, 715 (1991).
[42]. Romero, O.J., Suszynski, W.J., Scriven, L.E. and Carvalho, M.S., “Low-Flow Limit in Slot Coating of Dilute Solutions of High Molecular Weight Polymer.”, J. Non-Newtonian Fluid Mech., 118, 137 (2004).
[43]. Romero, O.J., Scriven, L.E. and Carvalho, M.S., “Effect of Curvature of Coating Die Edges on the Pinning of Contact Line.”, AIChE J., 52, 447 (2006).
[44]. Ruschak, K.J., “Limited Flow in a Pre-Metered Coating Device.”, Chem. Eng. Sci., 31, 1057 (1976).
[45]. Russel, T.A., Wilson R.M. and Sanford C.R., “Multiple Coating Apparatus”, US Patent 2,761,417 (1956).
[46]. Russel, T.A., “Multiple Coating Apparatus.”, U.S. Patent 2,761,418 (1956).
[47]. Sartor, L., “Slot Coating:Fluid Mechanics and Die Design.”, Ph.D. Thesis, University of Minnesota, Minneapolis (1990).
[48]. Schweizer, P.M., “Visualization of Coating Flows.”, J. Fluid Mech., 193, 285 (1988).
[49]. Sullivan, T.M. and Middleman, S., “Film Thickness in Blade Coating of Viscous and Viscoelastic Liquids.”, J. Non-Newtonian Fluid Mech., 21, 13 (1986).
[50]. Vafaei, S. and Podowski, M.Z., ”Analysis of the Relationship Between Liquid Droplet Size and Contact Angle.”, Advances in Colloid and Interface Science, 113, 133 (2005).
[51]. Tallmadge, J.A., Weinberger,C.B. and Faust, H.L., “Bead Coating Instability:A Comparison of Speed Limit Data with Theory.”, AIChE J., 25, 1056 (1979).
[52]. Taylor, S.D. and Hrymak, A.N., “Visualization and Flow Simulation of a Two-Layer Slot Coater.”, Chem. Eng. Sci., 54, 909 (1999).
[53]. Tsuda, T., Yoshiba, H., Aoki, T., “Die Head Coating, Coating Device, and Method of Manufacturing Die Head for Coating.”, U.S. 7,160,390 (2007).
[54]. Watanabe, M., “Coating Device and a Method of Coating.”, United States Patent, 5,700,325 (1997).
[55]. Wen, S.H., Liu, T.J., “Extrusion Die Design For Multiple Stripes.”, Polym. Eng. Sci., 35, 759 (1995).
[56]. William, R., Alan, P. and Robert, A., ”Coating Edge Control.” United States Patent, 7,097,673 (2001).
[57]. Yang, C.K., Wong, D.S.H. and Liu, T.J., “The Effects of Polymer Additives on the Operating Windows of Slot Coating.”, Polym. Eng. Sci., 44, 1970 (2004).
[58]. Yokoi, H. and Sato, H., “Color Filter, Display Device Using Color Filter, Apparatus Comprising Display Device, Ink-Jet Head, and Color Filter Manufacturing Method and Apparatus.”, United States Patent, 5,956,063 (1999).
[59]. 朱文彬,低黏度牛頓流體之預調式塗佈分析,國立清華大學化學工程研究所碩士論文,1997。
[60]. 李國陽,擠壓式塗佈工程之研究,國立清華大學化學工程研究所博士論文,1990。
[61]. 溫恕恆,利用有限元素法對三維流動的分析,國立清華大學化學工程研究所博士論文,1990。
[62]. 喻雲威,擠壓式模具內複雜流動之分析,國立清華大學化學工程研究所博士論文,1998。
[63]. 楊之光,先進狹縫式塗佈研究,國立清華大學化學工程研究所博士論文,2001。
[64]. 方聰偉,微米級條紋式塗佈,國立清華大學化學工程研究所碩士論文,2001。
[65]. 張凱鈞,條紋式塗佈之研究,國立清華大學化學工程研究所碩士論文,2006。
[66]. 林于智,精密條紋式塗佈工程之研究,國立清華大學化學工程研究所碩士論文,2007。
[67]. 劉大佼,高分子加工原理與應用,揚智出版社,台北,1997。