簡易檢索 / 詳目顯示

研究生: 何恭維
Ho, Kung-Wei
論文名稱: 環境效應對改質奈米碳管/環氧樹脂複合材料之機械性質研究
Environmental Effects on Mechanical Properties of Modified CNT/Epoxy Resin Composites
指導教授: 葉銘泉
Yip, Ming-Chuen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 93
中文關鍵詞: 複合材料奈米碳管機械性質環境效應改質
外文關鍵詞: Composites, CNT, Mechanical Properties, Environmental Effects, Modify
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管擁有許多優良特性,如優秀的機械性質、導電導熱性佳、質輕及高長徑比等,故將奈米碳管作為複合材料的補強材,並用於航太或電子產品等,而這些應用可能在某種環境下使用。以改質後之奈米碳管可加強與基材間之介面強度,增加其應用範圍,故本研究旨在探討在各種不同環境測試下,改質奈米碳管對複合材料的影響,並用SEM觀察印證結果。結果顯示,改質奈米碳管可以有效的增加奈米碳管與環氧樹脂之間的介面強度。在高溫老化、高溫高濕老化及熱循環之環境測試下,改質奈米碳管皆比未改質奈米碳管有較佳的機械性質。且改質奈米碳管藉由介面強度的增強,降低了複合材料的熱膨脹係數及提高了玻璃轉化溫度,進而提升了熱穩定性。


    Carbon nanotubes have many outstanding properties, such as mechanical, electronic, thermal properties, light weight and high aspect ratio, Carbon nanotubes were used as the reinforcement material of composites, and have been applied CNT to aeronautical industries or electrical products. But these applications could be used in many conditions, so the objective of this study was to discuss the effect of composites with modified-CNT in different testing conditions, and the results were examined using scanning electron microscope. The results demonstrated that modified-CNT could enhance the interfacial adhesion between the CNT and epoxy. At high temperature aging, high temperature/ high humidity aging, and thermal cycle testing conditions, the mechanical properties of modified-CNT composites were better than unmodified-CNT. Because of the interfacial adhesion was enhanced by modified-CNT, which reduced the coefficient of thermal expansion and increased the glass transition temperature, promoting the thermal stability.

    目錄 目錄 …………………………………………………………. Ⅰ 表目錄 …………………………………………………………. Ⅲ 圖目錄 …………………………………………………………. Ⅳ 符號表 …………………………………………………………. VII 第一章 前言……………………………………………………. 1 第二章 研究動機………………………………………………. 3 第三章 文獻回顧………………………………………………. 5 3-1 奈米碳管………………………………………………. 5 3-1.1 奈米碳管之起緣………………………………………. 5 3-1.2 奈米碳管之製備………………………………………. 6 3-1.3 奈米碳管之特性………………………………………. 7 3-2 環氧樹脂………………………………………………. 8 3-3 高分子導電複合材料…………………………………. 9 3-4 奈米碳管/高分子複合材料之性質…………………… 10 3-5 環境因素對複合材料機械性質之影響………………. 11 3-6 改質奈米碳管…………………………………………. 12 第四章 實驗內容及程序………………………………………. 14 4-1 實驗材料………………………………………………. 14 4-2 實驗儀器與設備………………………………………. 15 4-3 實驗流程………………………………………………. 22 4-4 試片製作流程…………………………………………. 23 4-4.1 改質奈米碳管…………………………………………. 23 4-4.2 製片製備………………………………………………. 23 4-5 實驗測試條件…………………………………………. 24 4-6 實驗測試方法…………………………………………. 25 第五章 結果與討論……………………………………………. 31 5-1 改質奈米碳管之鑑定分析……………………………. 31 5-1.1 Raman光譜分析……………………………...………. 31 5-1.2 FTIR光譜分析…..…………………………………….. 32 5-2 DSC測試分析…...…………………………………….. 33 5-3 TMA測試分析..……………………………………….. 33 5-4 未改質與改質奈米碳管/環氧樹脂之機械性質分析… 35 5-5 環境效應下未改質與改質奈米碳管/環氧樹脂之機械性質 分析……………………………………………..... 37 5-5.1 在85℃及120℃環境下預處理之機械性質分析…….. 37 5-5.2 在25℃/85%RH及85℃/85%RH環境下預處理之機械性質分 析……………………………………………. 38 5-5.3 經熱循環後機械性質分析……………………………. 40 5-6 電性分析………………………………………………. 41 5-7 吸濕測試………………………………………………. 42 5-8 空孔率測試……………………………………………. 42 5-9 密度測試………………………………………………. 42 5-10 形態學分析……………………………………………. 43 第六章 結論……………………………………………………. 45 參考文獻 …………………………………………………………. 47 附表 …………………………………………………………. 52 附圖 …………………………………………………………. 58 表目錄 表5-1 奈米碳管/環氧樹脂複合材料之玻璃轉化溫度………..52 表5-2 奈米碳管/環氧樹脂複合材料之膨脹係數……………..52 表5-3 奈米碳管/環氧樹脂複合材料之抗拉強度值…………..52 表5-4 奈米碳管/環氧樹脂複合材料之楊氏係數值…………..53 表5-5 奈米碳管/環氧樹脂複合材料之抗彎強度值…………..53 表5-6 高溫老化後奈米碳管/環氧樹脂複合材料之抗拉強度..53 表5-7 高溫老化後奈米碳管/環氧樹脂複合材料之抗彎強度..54 表5-8 高溫高濕老化後奈米碳管/環氧樹脂複合材料之抗拉強 度……………………………………………………… 54 表5-9 高溫高濕老化後奈米碳管/環氧樹脂複合材料之抗彎強 度……………………………………………………… 54 表5-10 熱循環後奈米碳管/環氧樹脂複合材料之抗拉強度…..55 表5-11 熱循環後奈米碳管/環氧樹脂複合材料之抗彎強度…..55 表5-12 未改質奈米碳管/環氧樹脂複合材料之表面電阻值…..55 表5-13 奈米碳管/環氧樹脂複合材料之體積電阻值…………..56 表5-14 奈米碳管/環氧樹脂複合材料吸濕之飽和點…………..56 表5-15 奈米碳管/環氧樹脂複合材料之空孔率………………..56 表5-16 奈米碳管/環氧樹脂複合材料之密度...….……………57 圖目錄 圖3-1 奈米碳管…………………………………………………58 圖3-2 混入同體積的纖維與顆粒………………………………58 圖4-1 微拉伸試驗機及溫度控制箱……………………………59 圖4-2 熱壓機……………………………………………………59 圖4-3 超音波震盪機…………………………………………..60 圖4-4 電磁加熱攪拌機………………………………………..60 圖4-5 直流攪拌機……………………………………………..61 圖4-6 真空烘箱…………………………………………………61 圖4-7 鑽石切割機………………………………………………62 圖4-8 低速型鑽石切割機………………………………………62 圖4-9 恆溫恆溼機……………………………………………..63 圖4-10 熱循環機…………………………………………………63 圖4-11 高解析度場發射掃描電子顯微鏡………………………64 圖4-12 電子天秤…………………………………………………64 圖4-13 水幫浦……………………………………………………65 圖4-14 靜態拉伸試驗機…………………………………………65 圖4-15 高阻計……………………………………………………66 圖4-16 掃描式熱差分析儀………………………………………66 圖4-17 拉曼光譜分析儀…………………………………………67 圖4-18 熱機械分析儀……………………………………………67 圖4-19 場發射槍掃描式電子顯微鏡……………………………68 圖4-20 實驗流程圖………………………………………………68 圖4-21 奈米碳管改質流程圖……………………………………69 圖4-22 試片製作流程圖…………………………………………69 圖4-23 熱壓完成後奈米碳管/環氧樹脂複合材料試片……….70 圖4-24 靜態拉伸強度測試前後之試片…………………………70 圖4-25 抗彎強度測試前後之試片………………………………71 圖5-1 未改質奈米碳管之拉曼光譜圖…………………………71 圖5-2 改質奈米碳管之拉曼光譜圖……………………………72 圖5-3 未改質奈米碳管之FTIR圖譜………………………....72 圖5-4 改質奈米碳管之FTIR圖譜…………………………....73 圖5-5 未固化環氧樹脂之DSC圖…………………………….. 73 圖5-6 環氧樹脂之DSC圖………………………………….....74 圖5-7 未改質奈米碳管/環氧樹脂複合材料之位移-溫度曲線74 圖5-8 改質奈米碳管/環氧樹脂複合材料之位移-溫度曲線..75 圖5-9 奈米碳管/環氧樹脂複合材料之玻璃轉化溫度……….75 圖5-10 奈米碳管/環氧樹脂複合材料之熱膨脹係數………….76 圖5-11 奈米碳管/環氧樹脂複合材料之抗拉強度值………….76 圖5-12 奈米碳管/環氧樹脂複合材料之楊氏係數…………….77 圖5-13 奈米碳管/環氧樹脂複合材料之抗彎強度…………….77 圖5-14 高溫老化後奈米碳管/環氧樹脂複合材料之抗拉強度.78 圖5-15 高溫老化後奈米碳管/環氧樹脂複合材料之抗彎強度.78 圖5-16 高溫高濕老化後奈米碳管/環氧樹脂複合材料之抗拉強 度……………………………………………………… 79 圖5-17 高溫高濕老化後奈米碳管/環氧樹脂複合材料之抗彎強 度……………………………………………………… 79 圖5-18 熱循環後奈米碳管/環氧樹脂複合材料之抗拉強度….80 圖5-19 熱循環後奈米碳管/環氧樹脂複合材料之抗彎強度….80 圖5-20 奈米碳管/環氧樹脂複合材料之表面電阻值………….81 圖5-21 奈米碳管/環氧樹脂複合材料之體積電阻值………….81 圖5-22 未改質奈米碳管/環氧樹脂複合材料之吸濕曲線…….82 圖5-23 改質奈米碳管/環氧樹脂複合材料之吸濕曲線……….82 圖5-24 改質與未改質奈米碳管/環氧樹脂複合材料之吸濕曲 線…………………………………………………………83 圖5-25 奈米碳管/環氧樹脂複合材料之空孔率……………….83 圖5-26 奈米碳管/環氧樹脂複合材料之密度………………….84 圖5-27 純環氧樹脂斷面圖……………………………………..84 圖5-28 0.25phr未改質奈米碳管/環氧樹脂複合材料斷面圖…85 圖5-29 0.25phr改質奈米碳管/環氧樹脂複合材料斷面圖……85 圖5-30 0.5phr未改質奈米碳管/環氧樹脂複合材料斷面圖….86 圖5-31 0.5phr改質奈米碳管/環氧樹脂複合材料斷面圖…….86 圖5-32 0.75phr未改質奈米碳管/環氧樹脂複合材料斷面圖…87 圖5-33 0.75phr改質奈米碳管/環氧樹脂複合材料斷面………87 圖5-34 1phr未改質奈米碳管/環氧樹脂複合材料斷面圖…….88 圖5-35 1phr改質奈米碳管/環氧樹脂複合材料斷面圖……….88 圖5-36 未改質奈米碳管分散圖………………………………..89 圖5-37 改質奈米碳管分散圖…………………………………..89 圖5-38 未改質奈米碳管與環氧樹脂介面接著圖………………90 圖5-39 改質奈米碳管與環氧樹脂介面接著圖…………………90 圖5-40 未改質奈米碳管/環氧樹脂複合材料經高溫老化後之斷面 圖…………………………………………………… 91 圖5-41 改質奈米碳管/環氧樹脂複合材料經高溫老化後之斷面 圖……………………………………………………… 91 圖5-42 高溫高濕老化後未改質奈米碳管/環氧樹脂複合材料斷面 圖…………………………………………………… 92 圖5-43 高溫高濕老化後改質奈米碳管/環氧樹脂複合材料斷面 圖……………………………………………………… 92 圖5-44 未改質奈米碳管/環氧樹脂複合材料經熱循環後之斷面 圖……………………………………………………… 93 圖5-45 改質奈米碳管/環氧樹脂複合材料經熱循環後之斷面 圖…………………………………………………………93 符號表 phr:重量百分比(Per hundred) Tg:玻璃轉化溫度(Glass transition temperature) σn:抗彎強度(Bending strength) P:最大負載(Maximum load) L:支撐點間距(Span length) b:試片寬度(Width) e:試片厚度(Thickness) V:體積(Volume) p:空孔率(Porosity) ρ:密度(Density)

    參考文獻
    1. 張立德, 牟季美, ”奈米材料和奈米結構,” 滄海書局. (2002)
    2. G. Overney, W. Zhong and D. Tománek, “Structural Rigidity and Low Frequency Vibrational Modes of Long Carbon Tubules,” Z. Phys. D 27, 93–96. (1993)
    3. B. I. Yakabson, C. J. Brabec and J. Bernholc, “Nanomechanics of carbon nanotubes: Instabilities beyond linear response,” Physics Review Letter, 76, 2511–2514. (1996)
    4. M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature, 381, 678–680. (1997)
    5. 成會明, ”奈米碳管,” 五南圖書出版股份有限公司. (2004)
    6. R. S. Ruoff and D. C. Lorents, ” Mechanical and thermal properties of carbon nanotubes,” Carbon, 33(7), 925–930. (1995).
    7. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Crul and R. E. Smalley, “C60 Buckminsterfullerene,” Nature, 318, 162. (1985)
    8. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56-58. (1991)
    9. T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, “Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes,” Nature, 391, 62–64. (1998)
    10.S. Iijima and T. Ichlhashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 363, 603–5. (1993)
    11.D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy and J. Vazquez, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls,” Nature, 363, 605–7. (1993)
    12.C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle and S. Lefrant, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature, 388, 756–8. (1997)
    13.P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Fohmund, D. T. Colbert and K. A. Smith, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chemical Physics Letters, 313(1-2), 91–7. (1999)
    14.Z. F. Ren, Z. P. Huang, J. W. Xu, D. Z. Wang, J. G. Wen and J. H. Wang, “ Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot,” Applied Physics Letters, 75(8), 1086–8. (1999)
    15.Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush and M. P. Siegal, “ Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science, 282, 1105–7. (1998)
    16.M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, ”Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature 381, 678–680. (1996)
    17.E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, 277, 1971–5. (1997)
    18.D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert and K. A. Smith, “ Elastic strain of freely suspended single-wall carbon nanotube ropes,” Applied Physics Letters, 74(25), 3803–5. (1999)
    19.M. Grujicic and G. Cao, ”A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes filled polymeric materials,” Journa of Materials Science, 39, 4441–4449. (2004)
    20.H. G. Florian, W. H. G. Malte, F. Bodo and S. Karl, ”Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–A comparative study,” Composites Science and Technology, 65, 2300–2313. (2005)
    21.K. T. Lau, M. Lu and K. Liao, ”Improved mechanical properties of coiled carbon nanotubesreinforced epoxy nanocomposites,” Composites: Part A, 37, 1837–1840. (2006)
    22.C. F. Schmid and D. J. Klingenberg, ”Mechanical flocculation in flowing fiber suspensions,” Phys Rev Lett, 84(2), 290–293. (2000)
    23.Y. S. Song and J. R. Youn, ”Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,” Carbon, 43, 1378–1385. (2005)
    24.K. T. Lau, S. Q. Shi and H. M. Cheng, ”Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures,” Composites Science and Technology, 63, 1161–1164. (2003)
    25.F. Deng, T. Ogasawara and N. Takeda, ”Tensile properties at different temperature and observation of micro deformation of carbon nanotubes–poly(ether ether ketone) composites,” Composites Science and Technology, 67, 2959–2964. (2007)
    26.Y. K. Choi, K. I. Sugimoto, S. M. Song, Y. Gotoh, Y. Ohkoshi and M. Endo, ”Mechanical and physical properties of epoxycomposites reinforced by vapor grown carbon nanofibers,” Carbon, 43, 2199–2208. (2005)
    27.Y. Zou, Y. Feng, L. Wang and X. Liu, ”Processing and properties of MWNT/HDPE composites,” Carbon, 42, 271–277. (2004)
    28.J. M. F. de Paiva, S. Mayer and M. C. Rezende, ”Evaluation of mechanical properties of four different carbon/epoxy composites used in aeronautical field,” Materials Research, 8, 1, 91–97. (2005)
    29.L. Du and S. C. Jana, ”Hygrothermal effects on properties of highly conductive epoxy/graphitecomposites for applications as bipolar plates,” Journal of Power Sources, 182, 223–229. (2008)
    30.S. Rouquie, M. C. L. Frenot, J. Cinquin and A. M. Colombaro, “Thermal cycling of carbon/epoxy laminates in neutral and oxidative environments,” Composites Science and Technology, 65, 403–409. (2005)
    31.B. C. Ray, ”Temperature effect during humid ageing on interfacesof glass and carbon fibers reinforced epoxy composites,” Journal of Colloid and Interface Science, 298, 111–117. (2006)
    32.Y. S. Song and J. R. Youn, ”Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,” Carbon, 43, 1378–1385. (2005)
    33.S. Banerjee, T. Hemraj-Benny and S. S. Wong, ”Covalent Surface Chemistry of Single-Walled Carbon Nanotubes,” Advanced Materials, 17, 1, 17–29. (2005)
    34.Y. P. Zheng, A. B. Zhang, Q. H. Chen, J. X. Zhang and R. C. Ning, ”Functionalized effect on carbon nanotube/epoxy nano-composites,” Materials Science and Engineering A, 435–436, 145–149. (2006)
    35.P. He, Y. Gao, J. Lian, L. Wang, D. Qian, J. Zhao, W. Wang, M. J. Schulz, X. P. Zhou and D. Shi, ”Surface modification and ultrasonication effect on the mechanical properties of carbon nanofiber/polycarbonate composites,” Composites: Part A, 37, 1270–1275. (2006)
    36.B. Li, C. R. Zhang, F. Cao, S. Q. Wang, B. Chen and J. S. Li, ”Effects of fiber surface treatments on mechanical properties of T700 carbon fiber reinforced BN–Si3N4 composites,” Materials Science and Engineering A, 471, 169–173. (2007)
    37.F. H. Gojny and K. Schulte, ”Functionalisation effect on the thermo-mechanical behaviourof multi-wall carbon nanotube/epoxy- composites,” Composites Science and Technology 64, 2303–2308. (2004)
    38.F. H. Gojny, J. Nastalczyk, Z. Roslaniec and K. Schulte, ”Surface modified multi-walled carbon nanotubes in CNT/epoxy- composites,” Chemical Physics Letters, 370, 820–824. (2003)
    39.P. C. Ma, J. K. Kim and B. Z. Tang, “Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites,” Composites Science and Technology, 67, 2965–2972. (2007)
    40.楊育庭, “碳奈米管/聚胺基甲酸酯複合材料之製備及導電性與電磁遮蔽性質之研究,” 國立清華大學化學工程學系碩士論文. (2005)
    41.ASTM D638-03, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol.08.02. (1982)
    42.ASTM D790-95a, “Flexural Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standards, Vol. 08.01. (1996)
    43.ASTM D570-98, “Standard TestMethod for Water Absorption of Plastics,” (1998)
    44.ASTM C20, “Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water,” (2005)
    45.ASTM D792, “Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement,” (1998)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE