簡易檢索 / 詳目顯示

研究生: 李立宇
Li, Li-Yu
論文名稱: 使用爐管擴散製作異質接面矽晶太陽能電池
Fabrication of Silicon Heterojunction Solar Cells Using Furnace Diffusion Technology
指導教授: 王立康
Wang, Li-Karn
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 85
中文關鍵詞: 異質接面太陽能電池爐管擴散矽晶非晶矽鈍化透明導電膜
外文關鍵詞: heterojunction, solar cell, Furnace Diffusion, amorphous silicon, passivation, high-low junction, ITO
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的重點有二項,第一,用ITO來當太陽能電池的抗反射層(Anti-Reflection Coating),利用調控製程參數,在最佳化製程參數,以符合其太陽能電池之抗反射層的需求。第二,我們在此提出一新架構,以傳統平面無絨面(Texture)的矽晶太陽能電池為基礎,利用高溫石英爐管進行擴散,讓太陽能電池的效率有所提升。


    目錄 第一章 序論……………………………………………………………………… 1 1.1 研究背景………………………………………………………………1 1.2 太陽能電池發展現況…………………………………………………1 1.3 文獻回顧………………………………………………………………3 1.4 研究動機………………………………………………………………6 1.5 論文概要………………………………………………………………6 第二章 研究理論……………………………………………………………………8 2.1 太陽能源概論…………………………………………………………8 2.1-1太陽能光譜………………………………………………………9 2.2 基本半導體物理……………………………………………………11 2.2-1晶體結構…………………………………………………………11 2.2-2光吸收……………………………………………………………12 2.2-3半導體摻雜………………………………………………………14 2.2-4同質接面與異質接面……………………………………………17 2.2-5電子電洞的復合…………………………………………………17 2.3 太陽能電池基本原理………………………………………………19 2.3-1 光伏特效應……………………………………………………19 2.3-2 太陽電池工作原理……………………………………………19 2.3-3 太陽能電池等效電路…………………………………………21 2.3-4 太陽能電池基本參數…………………………………………23 2.4 效率損失來源………………………………………………………26 2.4-1 寄生電阻………………………………………………………26 2.4-2 溫度的影響……………………………………………………28 2.4-3 光學損失………………………………………………………29 2.4-4 復合損失………………………………………………………31 2.5 透明導電薄膜………………………………………………………33 2.5-1 透明導電薄膜基本特性………………………………………33 2.5-2 ITO導電特性……………………………………………………34 2.5-3 ITO光學特性……………………………………………………36 第三章 研究方法與製程步驟……………………………………………………38 3.1 實驗方法……………………………………………………………38 3.2 透明導電薄膜………………………………………………………38 3.2-1 ITO靶材…………………………………………………………38 3.2-2 ITO濺鍍製程流程………………………………………………39 3.2-3 ITO薄膜退火處理………………………………………………42 3.2-4 ITO薄膜分析……………………………………………………43 3.3 太陽能電池結構與製程……………………………………………43 3.3-1太陽能電池結構與研究方法……………………………………43 3.3-2 太陽能電池製程步驟…………………………………………44 3.4 實驗機台……………………………………………………………47 3.4-1低壓化學氣相沈積………………………………………………47 3.4-2 電漿輔助化學氣相沉積系統…………………………………48 3.4-3 高溫石英爐管擴散爐…………………………………………49 3.4-4 真空直流濺鍍系統……………………………………………50 3.4-5 真空退火爐管…………………………………………………51 3.4-6 電子束蒸鍍系統………………………………………………52 3.4-7 四點探針………………………………………………………53 3.4-8 紫外光與可見光光譜儀………………………………………54 3.4-9 拉曼光譜量測系統……………………………………………54 3.4-10 展阻量測系統…………………………………………………55 第四章 數據分析與結果討論……………………………………………………56 4.1 ITO薄膜數據分析與討論……………………………………………56 4.1-1 工作壓力………………………………………………………56 4.1-2 直流電壓………………………………………………………58 4.1-3 真空退火………………………………………………………59 4.1-4 結果與討論……………………………………………………63 4.2 異質矽晶太陽能電池數據分析與討論……………………………65 4.2-1 爐管擴散時間…………………………………………………65 4.2-2 非晶矽之爐管擴散……………………………………………69 4.2-3 異質接面矽晶太陽能電池……………………………………72 4.2-4 結果與討論……………………………………………………79 第五章 結論………………………………………………………………………81 參考文獻……………………………………………………………………………82

    參考文獻
    [1] D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A new Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power”, J.Appl. Phys., vol. 25, 676-677, 1954
    [2] William Sockley, and Hans J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells”, J.Appl. Phys., vol. 32, no. 3, 510-519, 1961.
    [3] 黃惠良, 曾百亨 , 太陽電池, 五南出版社, 2008
    [4] http://sanyo.com/news/2009/05/22-1.html
    [5] Armin G. Aberle ,“Surface Passivation of Crystalline Silicon Solar Cells:A Review”, Prog. Photovolt: Res. 8, 362-376, 2000
    [6] Mandelkorn J, Lamneck JH.“Simplified fabrication of back surface electric field silicon cells and novelcharacteristic of such cells ” , In Proceedings of the 9th IEEE Photovoltaic Specialists Conference, New York, 66, 1972
    [7] Asuha, Y. L. Liu, O. Maida, M. Takahashi, and H. Kobayashi, “Post oxidation Annealing Treatments to Improve Si/Ultrathin SiO2 Characteristics Formed by Nitric Acid Oxidation” J. Electrochem.Soc., vol. 151, no.12, G824-G828, 2004.
    [8] T. Lauinger, J. Schmidt, A. G. Aberle, and R. Hezel, “Record low surface recombination velocities on 1 Ω cm p-silicon using remote plasma silicon nitride passivation,” Appl. Phys. Lett., vol. 68, no. 9, 1232-1234, 1996
    [9] B. Sopori and Y. Zhang, ”H-Diffusion Mechanism(s) in PECVD Nitride Passivation of Si Solar Cells,” NCPV 1st Conf. Program Review Meeting, Lakewood Colorado, 14-17, 2001
    [10] I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas and R. Alcubilla,“Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx: H films,” Appl. Phys. Lett., vol. 79, no. 14, 2199-2201, 2001
    [11] S. K. Dhungel, J. Yoo, K. Kim, B. Karunagaran, H. Sunwoo, D. Mangalaraj, and J. Yi, “Effect of pressure on surface passivation of silicon solar cell by forming gas annealing,” Mater. Sci. Semicond. Process., vol. 7, 427-431, 2004
    [12] V. D. Mihailetchi, Y. Komatsu, and L. J. Geerligs, “Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells,” Appl. Phys. Lett. ,vol. 92, no. 6, 063510, 2008
    [13] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa and Y. Kuwano,“Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”, Jpn. J. Appl. Phys. 31 , 3518-3522, 1992
    [14] M. Taguchi , K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, “HITTM cells - high-efficiency crystalline Si cells with novel structure”, Prog. Photovolt: Res. 8, 503-513, 2000
    [15] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, Chap. 3, John Wiley & Sons, Ltd, 2003.
    [16] Streetman, Ben G.; Sanjay Banerjee (2000). Solid State electronic Devices (5th ed.). New Jersey: Prentice Hall. p. 524. ISBN 0-13-025538-6
    [17] http://nobelprize.org/nobel_prizes/physics/laureates/2000/
    [18] S. M. Sze, “Physics of Semiconductor Devices”, 2nd Edition.
    [19] K. L. Chopra, S. Major and D. K. Pandya ,“Transparent conductors—A status review”, Thin Solid Films, vol. 102,1-46 ,1983
    [20] John C. C. Fan and F. J. Bachner, “Properties of Sn-Doped In2O3 Films Prepared by RF Sputtering”J. Electorchem. Soc. 122, 1719-1724 ,1975
    [21] Y. Shigesato, Y. Hayashi and T. Haranoh,“Electrical and structural properties of low resistivity tin‐doped indium oxide films”, Appl. Phys.Lett.61,73-75 ,1992
    [22] W. F. Wu, B. S. Chiou and S. T. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films”, emicond. Sci. Technol. 9 1242, 1994
    [23] M. Quaas, C. Eggs and H. Wulff, “Structural studies of ITO thin films with the Rietveld method”, Thin Solid Films, vol.332, 277-281, 1998
    [24] W. F. Wu and B. S. Chiou,“Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing”, Thin Solid Films, 247, 201-207, 1994
    [25] V. S. Reddy, K. Das, A. Dhar and S. K. Ray, “The effect of substrate temperature on the properties of ITO thin films for OLED applications”, Semicond. Sci. Technol. 21, 1747–1752, 2006
    [26] Y. Hu, X. Diao, C. Wang, W. Hao, T. Wang,“Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering”, Vacuum, 75, 183–188, 2004
    [27] 楊明輝, 透明導電膜, 2006
    [28] E. Burstein,“Anomalous Optical Absorption Limit in InSb”, Phys. Rev. 93, 632-633, 1954
    [29] Yeon Sik Jung and Sung Soo Lee, “Development of indium tin oxide film texture during DC magnetron sputtering deposition”, Journal of Crystal Growth, 259, 343–351, 2003
    [30] D. Kim, Y. Han, J. S. Cho and S. K. Koh,“Low temperature deposition of ITO thin films by ion beam sputtering”, Thin Solid Films, vol.377-378, 81–86, 2000
    [31] J. C. C. Fan and F. J. Bachner,“Properties of Sn-Doped In2O3 Films Prepared by RF Sputtering”, J. Electrochemi. Soc. 12, 1719-1724,1975
    [32] H. L. Hwang, J. Y. Lin, and C. Y. Sun,“Research and Development oh High-Efficiency Space Silicon Solar Cells”, 2nd Conference on Space Technology Research, 337-341, 1994
    [33] N. Jensen, U. Rau, R. M. Hausner, S. Uppal, L. Oberbeck, R. B. Bergmann, and J. H. Werner, “Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells”, J. Appl. Phys. 87, 2639, 2000
    [34] Y. Matsumoto, S. Robles and S. J. Sandoval,“Short Thermal Annealing for Crystallization of Plasma-CVD Amorphous Silicon Films”, Superficies Vacio, 10, 5-8, 2000
    [35] N. Jensen, R. M. Hausner, R. B. Bergmann, J. H. Werner and U. Rau,“Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells”,Prog. Photovolt: Res., 10, 1-13, 2002
    [36] O. V. Roos,“A simple theory of back surface field (BSF) solar cells”, J. Appl. Phys. Vol.49, 3503, 1978
    [37] H. Fujiwara and M. Kondo, “Effects of a‐Si:H layer thicknesses on the performance of a‐Si:H/c‐Si heterojunction solar cells”, J. Appl. Phys. 101, 054516, 2007
    [38] M. Schaper, J. Schmidt, H. Plagwitz and R. Brendel,“20.1%-efficient Crystalline Silicon Solar Cell with Amorphous Silicon Rear-surface Passivation”, Prog. Photovolt: Res. 13, 381–386, 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE