簡易檢索 / 詳目顯示

研究生: 陳瑩珊
Chen, Ying-Shan
論文名稱: 利用漸逝波激發光誘導分子釋出氫離子應用於免疫感測表面再生技術之研製
Evanescent Wave Induced Proton Release for Immunosensor surface regeneration
指導教授: 曾繁根
Tseng, Fan-Gang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 107
中文關鍵詞: 漸逝波光誘導分子o-NBA表面再生
外文關鍵詞: Evanescent wave, photo-induced molecule, surface regeneration
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇實驗欲藉由波長365nm的紫外光在光纖內全反射傳遞的同時,於光纖表面的另一端產生漸逝波,來誘導靠近感測表面的光誘導分子 鄰-硝基苯甲醛 (o-Nitrobenzaldehyde , o-NBA) ,使此分子於短時間(nanosecond)內進行光化學反應並釋出大量的氫離子,改變靠近感測表面的環境酸鹼值,將表面的抗體抗原配對分離,利用此機制建立出一免疫感測表面再生技術,來達到體內重覆檢測的效果。實驗結果顯示,經由電化學量測的實驗,距離表面100nm 高度的感測表面,局部環境酸鹼值在1分鐘內可由pH=7.0大幅下降至pH=2.7,3分鐘後酸鹼值降至2.1而趨於穩定,另外,隨著距表面高度的上升,溶液酸鹼值下降的幅度愈趨平緩,而在距離表面500μm之外的環境酸鹼值於5分鐘內幾乎維持恆定不受影響 (pH~7)。於平面感測系統上,本實驗機制的免疫分離效果於10分鐘內可以達到85%,相對於傳統利用酸洗的方法,不僅可以達到傳統上酸液分離抗體抗原的效果,並因其只在表面激發出氫離子,使得此機制能夠將酸液侷限於感測表面,不致於影響外圍環境酸鹼值恆定,應用於體內感測時可避免傳統酸洗直接加入酸液對活體所造成的傷害,另外,實驗結果顯示,感測表面重複接合效果良好,重複感測4次並不會造成一級抗原的活性喪失。光纖感測系統的實驗上,本研究初步完成光纖漸逝波系統的建置,利用側向偵測波長460nm螢光訊號的機制,經由光纖回傳訊號至光譜儀的實驗上,已確認可以利用光吸收曲線上波長460nm是否存在波峰,來觀察是否有效將感測區表面抗體抗原配對分離。
    因此,本實驗欲藉由漸逝波誘導o-NBA分子釋出氫離子來將抗體抗原配對分離的機制與生醫微光纖檢測平台相互結合,來達成體內重覆檢測的願景。


    In this paper, we propose a novel method employing photo-induced immune complexes dissociation for surface regeneration. Protons, released by UV irradiation on a photochemical molecule o-Nitrobenzaldehyde (o-NBA), were employed to rapidly elevate solution pH level from 7.0 to 2.7 within 60sec. Applying to the dissociation of antigen/antibody conjugation, the elution efficiency of 85% within 10 minutes can be approached. This method can effectively confine the proton generation region out of reaching most of the target protein molecules in the solution by confining the irradiation of UV light to minimize protein damage, which is easily encountered by traditional acid washing way. Therefore, a reusable immunoassay can be realized.

    第一章 緒論 ………………………………………………………01 1.1 前言 ……………………………………………………………01 1.2 研究動機 ………………………………………………………02 第二章 理論分析與文獻回顧………………………………………04 2.1 抗體抗原配對分離原理及方法 ………………………………04 2.1.1 抗原與抗體間的作用力 ……………………………………06 2.1.1-1 靜電力 ……………………………………………………06 2.1.1-2 氫鍵結合力 ………………………………………………06 2.1.1-3 凡得瓦力 …………………………………………………06 2.1.1-4 疏水作用力 ………………………………………………07 2.1.2 抗體與抗原間的親和性 ……………………………………08 2.1.3 抗體與抗原配對的特點 ……………………………………09 2.1.3-1 特異性 ……………………………………………………09 2.1.3-2 比例性 ……………………………………………………09 2.1.4 配對分離方法 ………………………………………………11 2.1.4-1 離子濃度 …………………………………………………12 2.1.4-2 酸鹼值 ……………………………………………………14 2.1.4-3 電化學極化 ………………………………………………15 2.1.4-4 高壓 ………………………………………………………17 2.1.4-5 超音波 ……………………………………………………19 2.1.4-6 其他 ………………………………………………………20 2.2 表面修飾 ………………………………………………………22 2.2.1 表面固定 ……………………………………………………22 2.2.1-1 載體鍵結法 ………………………………………………22 2.2.1-2 交聯法 ……………………………………………………23 2.2.1-3 包埋法 ……………………………………………………23 2.2.2 自組裝單分子膜 ……………………………………………25 2.2.2-1 結構 ………………………………………………………26 2.2.2-2 成膜種類 …………………………………………………27 2.2.2-3 影響生長之因素 …………………………………………28 2.3 鄰-硝基苯甲醛 (o-Nitrobenzaldehyde)……………………30 2.4 螢光生成基本原理 ……………………………………………36 2.5 漸逝波理論 (Evanescent Wave) ……………………………38 2.5.1 司乃爾定律 (Snell’s Law)………………………………40 2.5.2 波型模態與全反射 …………………………………………42 2.6 光纖原理 ………………………………………………………44 2.6.1 光纖簡介 ……………………………………………………44 2.6.2 光纖結構 ……………………………………………………45 2.7 生醫感測器 ……………………………………………………49 第三章 實驗設計與流程……………………………………………55 3.1 實驗原理 ………………………………………………………55 3.2實驗設計…………………………………………………………56 3.2.1 平面系統 ……………………………………………………57 3.2.2光纖系統………………………………………………………62 3.3實驗步驟…………………………………………………………65 3.3.1 紫外線光譜儀量測o-NBA照光前後化學反應的回覆性……65 3.3.2 o-NBA溶液的製備……………………………………………66 3.3.3電化學訊號量測o-NBA溶液局部酸鹼值 ……………………67 3.3.3利用螢光分子–Cy3確定配對分離效果 ……………………68 3.3.4利用螢光分子–Cy3確認試片表面再生能力 ………………70 3.3.5 光纖系統–確認光纖蝕刻溶液 ……………………………72 3.3.6 光纖系統–確認濃度25%的BOE溶液蝕刻速率 ……………73 3.3.7 光纖系統–利用螢光分Marina Blue確定配對分離效果…74 第四章 實驗藥品與設備儀…………………………………………76 4.1 實驗藥品 ………………………………………………………76 4.2 實驗儀器 ………………………………………………………80 4.3 實驗儀器原理介紹 ……………………………………………82 4.3.1 螢光掃描機 …………………………………………………82 4.3.2 紫外線光譜儀 ………………………………………………84 第五章 實驗結果與討論……………………………………………87 5.1紫外線光譜儀量測o-NBA照光前後化學反應的回覆性 ………87 5.2利用電化學量測觀察表面局部區域的酸鹼值變化……………89 5.3利用螢光Cy3來量測分離抗原抗體配對的效果 ………………91 5.3.1 漸逝波光源對於螢光Cy3的影響……………………………91 5.3.2 抗原抗體配對分離效果的定量結果 ………………………93 5.4 光纖感測器系統製備 …………………………………………96 5.4.1 光纖化學蝕刻 ………………………………………………96 5.4.2 漸逝波光纖感測器檢測效果 ………………………………99 第六章 結論…………………………………………………………101 第七章 參考文獻……………………………………………………103

    [1] Alberto Diaspro, Federico Federici, Cristiano Viappiani, Silke Krol, Marzia Pisciotta, Giuseppe Chirico, Fabio Cannone, and Alessandra Gliozzi, J. Phys. Chem. B, 107, p.11008-11012 (2003)
    [2] Jungkwon Choi and Masahide Terazima, J. Phys. Chem. B,107, p.9552-9557 (2003)
    [3] P. Rizo,Bio-MEMS at LETI:Detection,CEA-LETI:Laboratory of reading system for Biology,pp.1-19 (2003)
    [4] Y.W. Lin, National Tsing Hua University Master Thesis
    [5] Y. Katakura, T. Miyazaki, H. Wada, T. Omasa, M. Kishimoto,Y. Goto, K.I. Suga, Protein Engineering, 13,719 (2000)
    [6] G.P. Anderson, M.A. Jacoby, F.S. Ligler, K.D. King, Biosensors and Bioelectronics, 12,329 (1997)
    [7] R.L. Wong, D. Mytych, S. Jacobs, R. Bordens, S.J. Swanson, Journal of Immunological Method, 209,1 (1995)
    [8] A.N. Asanov, W.W. Wilson, P.B. Oldham, Anal.Chem,70 ,1156 (1998)
    [9] V.V. Mozhaev, K.Heremans, J.Frank, P. Masson, C. Balny,Proteins:Function,and genetics, 24,81(1996)
    [10] K. Heremans, L, Smeller, Biochimica et Biophysica Acta, 1386, 353 (1998)
    [11] K. Heremans, The behaviour of proteins under pressure ,443 (1993)
    [12] C.Y. Cheung, D.J. Green, G.J. Litt, J.A. Laugharn, Clinical Chemistry ,44, 299 (1998)
    [13] M. Haga,T. Shimura,T. Nakamura,Kato, Y. Suzuki, Pharmaceutical Bull,35, 3822 (1987)
    [14] M.C. Moreno-Bondi, J. Mobley, J.P Alarie, T. Vo-Dinh,Journal of Biomedical Optic , 5,350 (2000)
    [15] A.P. Abel, M.G. Weller, G.L. Duveneck, M. Ehrat, H.M.Widmer, Anal.Chem, 68, 2905 (1996)
    [16] S.T. Jhuang, National Tsing Hua University Master Thesis
    [17] 孫偉銘,”利用微波電漿活化聚丙烯不織布纖維表面以固定蛋白質” (1999)
    [18] Ulman , A. , ”An Introduction to Ultrathin Organic Film” , Academics, 3, 254-264 (2003)
    [19] H.Y. Hsieh, National Tsing Hua University Master Thesis
    [20] Bierbaum,K.; Grunze,M; Baski,A.A; Chi L.F.; Schrepp,W.; Fuchs,H.,”Growth of self-assembled n-alkyltrichlorosilane films on Si(100) investigated by atomic force microscopy”, Langmuir, 11,2143-2150 (1995)
    [21] Resch,S.R;Grasserbauer,M.;Friedbacher,G;Vallant,TH.;Brunner,H.;Mayer,U. ; Hoffmann,H.;”In situ and ex situ AFM investigation of the formation of octadecylsiloxane monolayer”,Appl. Surface Sci.,168-175(1999)
    [22] Brzoska , J.B. , Shahidzadeh,N. ,Rondelez,F. , ”Evidence of transition temperature of the optimum deposition of drafted monolayer coatings”,Langmuir,9,1749-1753 (1993)
    [23] K. Bierbaum, M, Grunze, A.A. Baski, L.F. Chi, W. Schrepp,H. Fuchs, Langmuir, 11,2143(1995)
    [24] R. Resch, M. Grasserbauer, G. Friedbacher, T. Vallant, H.Brunner, U. Mayer, H. Hoffmann, Appl. Surface. Sc., 140,168 (1999)
    [25] S. Abbruzzetti, M. Carcelli, D. Rogolino, C.Viappiani, Photochem.Photobiol.sci, 2,796(2003)
    [26] M.Vass, I. Diblikova, I. Cernoch, M. Franek, Analytica Chimica Acta, 608 , 86 (2008)
    [27] M.V. George, J.C. Scalano, J.Phys.Chem, 84,492 (1980)
    [28] J. Choi, N. Hirota, M Terazima, Analytical sciences,17,13 (2001)
    [29] J. Choi, M Terazima, J.Phys.Chem.B, 107,9552(2003)
    [30]S.Abbruzzetti,M.Carcelli,D.Rogolino,C.Viappiani, Photochem.Photobiol.sci, 2,796(2003)
    [31] Stefania Abbruzzetti, Mauro Carcelli, Dominga Rogolino and Cristiano Viappiani, Photochem. Photobiol. Sci., 2, 2003, p.796–800
    [32] K.L. Willett, R.A. Hites, J Chem Ed, 77,900 (2000)
    [33] S. Abbruzzetti, E. Crema, L.Masio, A.Vecli, C. Viappiani, J.S. Small, L.J. Libertini, E.W. Small, Biophys.J, 78,405(2000)
    [34] S.H. Yu, National Yang Ming University Master Thesis
    [35] J.R. Lakowicz, Principles of Fluorescence Spectrocopy (Penum Press, New York,1983). Chapter 1-2.
    [36] Olympus America, Inc. (http://www.olympusmicro.com/)
    [37] 吳曜東, 光纖原理與應用, 全華科技, 2001
    [38] F.V. Bright, T.A. Betts, K.S. Litwiler, Anal. Chem., 62,1065(1990)
    [39] P. Oroszlan, G.L. Duveneck, M. Ehrat, H.M. Widmer, Proc.SPIE, 2068, 159(1994)
    [40] M.C. Moreno-Bondi, J. Mobley, J.P Alarie, T.Vo-Dinh, Journal of Biomedical Optic , 5,350 (2000)
    [41] T. Vo-Dinh, Spectrochemical Acta Part B, 63, 95(2008)
    [42] F. Long, M. He, H.C. Shi, A.N. Zhu, Biosensors and Bioelectronics, 23,952(2008)
    [43] G.P. Anderson, J. P. Golden, L.K. Cao, D. Wijesuriya, L.C. Shriver-Lake, F.S. Ligler, ENGINEERING IN MEOKINE AND BIOLOGY,94,739 (1994)
    [44] G. P. Anderson, J. P. Golden, and F. S. Ligler, “An evanescent wave biosensor Part I: Fluorescent signal acquisition from step-etched fiber optic probes,” IEEE Trans. Biomed. Eng 41, 578-584 (1994)
    [45] J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, “An evanescent wave biosensor Part II : Fluorescent signal acquisition from tapered fiber optic probes” , IEEE Trans. Biomed. Eng 41, 585-591 (1994)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE