簡易檢索 / 詳目顯示

研究生: 石婕廷
Shih, Chieh-Ting
論文名稱: Montel鏡組聚焦特性之同調掃描影像分析
Focusing Characteristics of the Montel Mirrors Analyzed by X-ray Ptychography
指導教授: 李志浩
Lee, Chih-Hao
湯茂竹
Tang, Mau-Tsu
口試委員: 陳健群
Chen, Chien-Chun
黃玉山
Huang, Yu-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 76
中文關鍵詞: 同步輻射同調X光掃描影像Montel鏡組
外文關鍵詞: Synchrotron Radiation, X-ray Ptychography, Montel Mirrors
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討在台灣光子源(Taiwan Photon Source)奈米探測光束線(TPS 23A)進行X光同調掃描影像學以優化Montel鏡組聚焦之研究。本論文嘗試以簡化的數學模型,對於Montel鏡組在數種光源形態暨掃描方式下的同調成像進行初步模擬,並檢視其影像重建的收斂程度。實驗在TPS 23A光束線進行。我們收集了超過124組繞射數據。藉由開源軟體PyNX進行影像重建及大量數據的分析。我們檢驗了該軟體的穩定度、光源的同調性、鏡組聚焦位置與焦點大小,並且成功藉由此方法量得鏡組調整時聚焦點的位置及光點大小變化。我們預期本論文的結果將有助於TPS 23A光束線奈米聚焦鏡組的進行有系統的聚焦調控,並且提供該光束線未來進行超高空間解析力的臨場(in-situ)實驗之潛力等。


    This thesis applies X-ray ptychography to investigate the nano-focusing characteristics of the Montel mirrors at the Taiwan Photon Source (TPS) X-ray Nano Probe beamline (TPS 23A XNP). The study utilizes a simplified mathematical model to simulate and evaluate the convergence of coherent images under various light source configurations and scan strategies of the Montel mirrors system. The experiments were conducted at the TPS 23A beamline. 124 sets of diffraction data were collected. By employing the open-source software PyNX for image reconstruction and data analysis, we examined the reliability of PyNX API tools, degrees of coherence of the probe, focal position, and focal spot size of the Montel mirrors. Furthermore, we successfully measured the changes of the focal point after adjusting the Montel mirrors. The results of this study constitute a foundational groundwork for systematically optimizing the focal spot of the nano-focusing Montel mirrors system at the TPS 23A beamline. Potential applications, such as in-situ experiments with ultra-high spatial resolution at the beamline are anticipated.

    摘要 II ABSTRACT III ACKNOWLEDGMENT IV CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 MONTEL MIRRORS 2 CHAPTER 2 PHASE RETRIEVAL 6 2.1 X-RAY PHASE PROBLEM 6 2.2 COHERENT DIFFRACTION IMAGING (CDI) 8 2.3 X-RAY PTYCHOGRAPHY 10 2.4 MULTI-MODE PROBE 12 CHAPTER 3 PRELIMINARY SIMULATION 13 3.1 MODEL 13 3.2 FERMAT-SPIRAL AND MESH-GRID 16 3.3 APERTURE WITH MONTEL 18 CHAPTER 4 EXPERIMENT 22 4.1 TPS 23A- X-RAY NANOPROBE BEAMLINE 22 4.2 MONTEL MIRRORS 24 4.3 SAMPLE 25 4.4 EXPERIMENT PROCEDURE 26 4.5 PYNX 28 4.6 DIFFRACTION PATTERNS AND RECONSTRUCTED PROBE AND OBJECT 29 CHAPTER 5 RESULTS AND DISCUSSION 30 5.1 PYNX: OPERATIONAL STRATEGY 30 5.1.1 Evaluation of PyNX Algorithm Recipes 30 5.1.2 Mode Number of Probe 34 5.1.3 Probe Propagate API Tool 35 5.1.4 Fourier Shell Correlation (FSC) API Tool 36 5.1.5 Summary of operational parameters 39 5.2 DATA ANALYSIS 40 5.2.1 Object at Axial Positions 41 5.2.2 Coherence of the Probe 42 5.2.3 Focal Position and Sizes 44 5.2.4 Tilting Montel Mirrors 49 CHAPTER 6 CONCLUSIONS 55 REFERENCES 57 APPENDIX-I INSTALLATION OF PYNX ON WINDOWS - 1 - APPENDIX-II JUBYTER NOTEBOOK SCRIPT - 5 - APPENDIX-III FOURIER SHELL CORRELATION - 11 - APPENDIX-IV PROBE PROPAGATION - 14 -

    1. Ice, G.E., R.I. Barabash, and A. Khounsary. Nested mirrors for X-rays and Neutrons. in Conference on Advances in X-Ray/EUV Optics and Components IV. 2009. San Diego, CA: Spie-Int Soc Optical Engineering.
    2. Liu, W.J., et al., Achromatic nested Kirkpatrick-Baez mirror optics for hard X-ray nanofocusing. Journal of Synchrotron Radiation, 2011. 18: p. 575-579.
    3. Liu, W., et al., Hard X-ray nano-focusing with Montel mirror optics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011. 649(1): p. 169-171.
    4. Maiden, A.M. and J.M. Rodenburg, An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy, 2009. 109(10): p. 1256-1262.
    5. Kirkpatrick, P. and A.V. Baez, Formation of optical images by X-rays. JOSA, 1948. 38(9): p. 766-774.
    6. Cosslett, V., A. ENGSTROM, and H. PATTEE JR, X-ray microscopy. Med. Biol. Illus, 1954. 4: p. 95-103.
    7. Liu, C.A., et al., Fabrication of nested elliptical KB mirrors using profile coating for synchrotron radiation X-ray focusing. Applied Surface Science, 2012. 258(6): p. 2182-2186.
    8. Lin, B.H., et al., Capabilities of time-resolved X-ray excited optical luminescence of the Taiwan Photon Source 23A X-ray nanoprobe beamline. Journal of Synchrotron Radiation, 2020. 27: p. 217-221.
    9. Miao, J.W., et al., Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 1999. 400(6742): p. 342-344.
    10. Rodenburg, J.M., et al., Hard-x-ray lensless imaging of extended objects. Physical Review Letters, 2007. 98(3): p. 4.
    11. Miao, J.W., et al., Beyond crystallography: Diffractive imaging using coherent x-ray light sources. Science, 2015. 348(6234): p. 530-535.
    12. Willmott, P., An introduction to synchrotron radiation: techniques and applications. 2019: John Wiley & Sons.
    13. Sayre, D., SOME IMPLICATIONS OF A THEOREM DUE TO SHANNON. Acta Crystallographica, 1952. 5(6): p. 843-843.
    14. Miao, J., D. Sayre, and H.N. Chapman, Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. Journal of the Optical Society of America a-Optics Image Science and Vision, 1998. 15(6): p. 1662-1669.
    15. Rodenburg, J. and A. Maiden, Ptychography, in Springer Handbook of Microscopy. 2019. p. 819-904.
    16. Quiney, H., et al., Diffractive imaging of highly focused X-ray fields. Nature Physics, 2006. 2(2): p. 101-104.
    17. Faulkner, H.M.L. and J. Rodenburg, Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Physical review letters, 2004. 93(2): p. 023903.
    18. Mandula, O., et al., PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures. Journal of Applied Crystallography, 2016. 49: p. 1842-1848.
    19. Thibault, P. and A. Menzel, Reconstructing state mixtures from diffraction measurements. Nature, 2013. 494(7435): p. 68-71.
    20. Yin, G.-C., et al. X-ray nanoprobe project at Taiwan Photon Source. in AIP Conference Proceedings. 2016. AIP Publishing LLC.
    21. Gray, R.M. and J.W. Goodman, Fourier transforms: an introduction for engineers. Vol. 322. 2012: Springer Science & Business Media.
    22. Chen, Y., X-ray Ptychography by Nested Montel Mirrors. 2019.
    23. Huang, X.J., et al., Optimization of overlap uniformness for ptychography. Optics Express, 2014. 22(10): p. 12634-12644.
    24. Bevis, C., et al. Multiple beam ptychography for large field of view imaging. in 19th Annual Conference on Novel Optical Systems Design and Optimization. 2016. San Diego, CA: Spie-Int Soc Optical Engineering.
    25. Group, X.-r.I. 23A X-ray Nanoprobe. 2022 Dec. 5, 2022]; Available from: http://tpsbl.nsrrc.org.tw/bd_page.aspx?lang=en&pid=1031&port=23A.
    26. Favre-Nicolin, V., et al., PyNX: high-performance computing toolkit for coherent X-ray imaging based on operators. Journal of Applied Crystallography, 2020. 53: p. 1404-1413.
    27. Elser, V., Phase retrieval by iterated projections. Journal of the Optical Society of America a-Optics Image Science and Vision, 2003. 20(1): p. 40-55.
    28. Thibault, P. and M. Guizar-Sicairos, Maximum-likelihood refinement for coherent diffractive imaging. New Journal of Physics, 2012. 14: p. 20.
    29. Marchesini, S., et al., Augmented projections for ptychographic imaging. Inverse Problems, 2013. 29(11): p. 23.
    30. van Heel, M. and M. Schatz, Fourier shell correlation threshold criteria. Journal of Structural Biology, 2005. 151(3): p. 250-262.

    QR CODE