研究生: |
張家綺 Chia-Chi Chang |
---|---|
論文名稱: |
利用動態掃描降低正子發射斷層影像中呼吸所產生的假影 Respiratory Motion Artifacts Reduction in PET image via Dynamic Scan |
指導教授: |
莊克士
Keh-Shih Chuang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 呼吸 、正子發射斷層掃描影像 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自民國七十一年以來,癌症即為國人十大死亡原因之首,近幾年來肺癌更成為國人罹癌症死亡的主要因素。正子發射斷層掃瞄(PET)可以偵測腫瘤細胞代謝葡萄糖的狀況,協助腫瘤的診斷與分期。應用正子發射斷層掃瞄影像中的半量化參數standard uptake value (SUV),可作為分辨腫瘤惡性程度的指標,減少施行侵入性檢查的必要。
由於良好的正子發射斷層掃瞄影像須耗費數分鐘的時間收集訊號,期間呼吸可能會引起肺部腫瘤移動而產生含有腫瘤移動軌跡的模糊影像。受到呼吸的效應影響,影像中的腫瘤體積變大、腫瘤形狀改變且腫瘤活度分佈也產生變化,進而影響SUV值計算的結果。
本實驗採用動態掃瞄方式造影,配合使用呼吸偵測器分別對點射源及臨床病患進行測試。在點射源的試驗中,以呼吸偵測器所得到的呼吸振幅、正旋圖投影影像中射源移動軌跡與正旋圖投影影像彼此的相關性等三種方式對所取得的所有正旋圖進行分組;在臨床試驗方面,則僅採用呼吸偵測器所反應的呼吸振幅對正旋圖進行分組。
結果顯示動態描掃依照呼吸振幅、正旋圖中射源移動軌跡、正旋圖間相關性等三種方式進行分組都將減少呼吸所產的假影,在點射源實驗中經過呼吸修正與未經過修正的腫瘤體積差異(volume reduction factor, VRF)最大為57.87%,而最大活度密度差異(maximum activity concentration recovery factor, MACRF)為110.3%;對於臨床病患的試驗,VRF最大為18.66%,MACRF最大為6.6%。
本實驗使用三種不同的方式降低呼吸所造成的影響,經過呼吸校正的影像將有助於提升正子發射斷層掃瞄影像量化分析的準確度、提高診斷正確性及訂定放射治療計畫中的靶體積與腫瘤劑量。
From 1982, cancer has been the main cause of people death in Taiwan, and lung cancer has been the leading cause of cancer death in recent years. PET provides the glucose metabolic function of tumor cells, helps to cancer diagnosis and staging. By using the semi-quantitative parameter “standard uptake value” in PET images as the index of tumor malignancy could reduce the necessity of invasive exam. Unfortunately, forming a PET image needs to take several minutes to accumulate enough signals. During the acquisition time, tumor motion could be caused by breathing; therefore, the image may become blurred with tumor trajectory. This respiratory effect could enlarge the tumor volume, change the tumor shape and the tumor activity distribution, and finally underestimate the SUV value. The aim of this study is to reduce the respiratory effect on PET images. This study uses the dynamic scan to acquire PET images, and the respiratory detector to acquire the respiratory amplitudes. In the study of point source, there are tree methods to divide the sinograms into subgroups: the respiratory amplitudes, the point source trajectory in sinograms, and the correlations between sinograms. In clinical trial, only uses the respiratory amplitudes to divide sinograms. The results show that, in point source trial, the tumor volume reduction factor (VRF) is up to 57.87%, and the maximum activity concentration recovery factor (MACRF) is up to 110.3%. For the clinical trials, the VRF is up to 18.66%, and the MACRF is up to 6.6%. This study uses tree different methods to reduce the respiratory artifacts on PET images. Images with respiratory correction will improve the accuracy on image quantitative analysis and accurately diagnose the disease. Furthermore, it provides an accurate target volume for radiotherapy and helps to modulate the tumor dose.
第七章 參考文獻
1. Barbara MB Fischer, Jann Mortensen and Liselotte Hjgaard 2001 Positron emission tomography in the diagnosis and staging of lung cancer: a systematic, quantitative review Oncology 2 659-665
2. Craig W. Steven, Reginald F. Munden, Kennth M Forster, et al. 2001 Respiratory-derived lung tumor motion is independent of tumor size, tumor location, and pulmonary function Int. J. Rad. Oncol. Biol. Phys. 51(1) 62-68
3. Dillemans B, Deneffe G, Verschakelen J, et al. 1994 Value of computed tomography and mediastinoscopy in preoperative evaluation of mediastinal nodes in non-small cell lung cancer Eur. J. Cardiothorac Surg. 8 37-42
4. Dewan NA, Reeb SD, Gupta NC, et al. 1995 PET-FDG imaging and transthoracic needle lung aspiration biopsy in evaluation of palmary lesions: a comparative risk-benefit analysis Chest 108 441-446
5. Erdi YE, Mawlawi O, Larson SM, Imbriaco M, et al. 1997 Segmentation of lung volume by adapative positron emission tomography image thresholding Cancer suppl. 80 2505-2509
6. Ekberg L, Holmberg O, Wittgren L, et al. 1998 What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Rad. Oncol. 48 71-77
7. Frederic H. Fathy 2002 Data acquisition in PET imaging J. Nucl. Med. Tech. 30(2) 39-49
8. Giraud P, De Rycke Y, Dubray B, et al. 2001 Conformal radiotherapy (CRT) planning for lung cancer: Analysis of intrathoracic organ motion during extreme phases of breathing Int. J. Rad. Oncol. Biol. Phys. 51 1081-1092
9. H.W. Yeung, H.A. Macapinlac, S.M. Larson, et al. 2002 Standardized uptake value in pediatric patient: an investigation to determine the optimum measurement parameter Eur. J. Nucl. Med. 29(1) 61-66
10. Harada T, Shirato H, Ogura S, et al. 2002 Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy Cancer 95 1720–1727
11. JB Bomanji 2001 Clinical role of positron emission tomography in oncology Lan. Oncol. 2 157-164
12. Johan F. Vansteenkiste 2003 PET scan in the staging of non-small cell lung cancer Lung cancer 42 27-37
13. Johan Vansteenkiste, Barbara M Fischer, Christophe Dooms, et al. 2004 Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review Oncology 5 531-540
14. K. M. Langen and D. T. L. Jones 2001 Organ motion and its management Int. J. Rad. Oncol. Biol. Phys. 50(1) 265-278
15. Katharina E. Sixel, Mark Ruschin, Romeo Tirona, et al. 2003 Digital fluoroscopy to qualify lung tumor motion: Potential for patient-specific planning target volume Int. J. Rad. Oncol. Biol. Phys. 57(3) 717-723
16. Langen KJ, Braun U, Kops ER, et al. 1993 The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas J. Nucl. Med. 34(3) 355-359
17. Luc Boucher, Serge Rodrigue, Roger Lecomte, et al. 2004 Respiratory gating for 3-Dimensional PET of the thorax: Feasibility and initial result J. Nucl. Med. 45(2) 214-219
18. Lowe VJ and Naunheim KS. 1998 Positron emission tomography in lung cancer Ann. Thorac. Surg. 65 1821-1829
19. Lowe VJ, Fletcher JW, Gobar L, et al. 1998 Prospective investigation of positron emission tomography in lung nodules J clin. Oncol. 16 1075-1084
20. Maurea S, Mainolfi C, Bazzicalupo L, et al. 1999 Imaging of adrenal tumors using FDG PET: comparison of benign and malignant lesions Am. J. Roentgenol 173 25-29
21. Miften MM, Das SK, Su M, et al. 2004 Incorporation of functional imaging data in the evaluation of dose distributions using the generalized concept of equivalent uniform dose Phys. Med. Biol. 9 1711-1721
22. Peter M Bloomfield, Terry J Spinks, Johnny Reed, et al. 2003 The design and implementation of a motion correction scheme for neurological PET Phys. Med. Biol. 48 959-978
23. Nicholas Koch, H. Helen Liu, George Starkschall, et al. 2004 Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: Part I-correlating internal lung motion with skin fiducial motion Int. J. Rad. Oncol. Biol. Phys. 60(5) 1459-1472
24. S. A. Nehmeh, Y. E. Erdi, C.C. Ling, et al. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer, Medical Physics 29 (3): 366-371 Mar. 2002.
25. Sadek A. Nehmeh, Yusuf E. Erdi, Kenneth E. Rosenzweig, et al. 2003 Reduction of respiratory motion artifacts in PET imaging of lung cancer by respiratory correlated dynamic PET : methodology and comparison with respiratory gated PET J. Nucl. Med. 44(10) 1644-1648
26. Stroobants S, Dhoore I, Dooms C, et al. 2003 Additional value of
whole-body FDG-PET in the detection of distant metastases in patients with potentially operable non-small cell lung cancer Clin. Lung Cancer 4 242-247
27. Vansteenkiste JF, Stroobants SG, De Leyn PR, et al. 1997 Mediastinal lymph node staging with FDG-PET scan in patients with potentially operable non-small cell lung cancer: A prospective analysis of 50 cases Chest 112 1480-1486
28. Weng E, Tran L, Rege S, et al. 2000 Accuracy and clinical impact of mediastinal lymph node staging with FDG-PET imaging in potentially resectable lung cancer Am. J. Clin. Oncol. 23 47-52
29. Webb WR, Gatsouris S, Zerhouni EA, et al. 1991 CT and MR
imaging in staging non-small cell bronchogenic carcinoma:
report of the Radiology Diagnostic Oncology Group Radiology
178 705-/13
30. Zhou SM, Wong TZ and Marks LB 2004 Using FDG-PET activity as a surrogate for tumor cell density and its effect on equivalent uniform dose calculation Med. Phys. 31(9) 2577-2583
31. Zasadny KR and Wahl RL 1993 Standard uptake values of normal-tissue at PET with 18FDG variations with body-weight and a method for correction Radiology 189(3) 847-850
32. Wan-Yu Lin, Gee-Chen Chang and Shyh-Jen Wang 2004 FDG-PET in single pulmonary nodules in Taiwan adults核醫雜誌17(2) 63-68
33. 台灣癌症臨床研究合作組織1998 肺癌診治共識 國家衛生研究院癌症研究組
34. 台灣癌症臨床研究合作組織2004 TCOG肺癌臨床指引 國家衛生研究院癌症研究組
35. 行政院衛生署衛生統計資訊網首頁http://www.doh.gov.tw/statistic/index.htm