簡易檢索 / 詳目顯示

研究生: 余景榆
Yu, Jing-Yu
論文名稱: 二次摻雜山梨醇對臨場沉積聚吡咯薄膜導電性影響之研究
The Effect of Secondary-Doping by Sorbitol On the Conductivity of in-situ deposition Polypyrrole Thin Films
指導教授: 王本誠
Wang, Pen-Cheng,
口試委員: 廖奕翰
林滄浪
王本誠
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 99
中文關鍵詞: 山梨醇
外文關鍵詞: sorbitol
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究中藉由臨場化學聚合法的方式,以氯化鐵作為氧化劑,將吡咯(pyrrole)單體氧化聚合成具導電特性的聚吡咯高分子,使用不同的陰離子作為一次摻雜劑以及平衡電荷離子,並加入二次摻雜劑,反應前,將預清洗的玻璃基材浸入反應溶液中,利用物理吸附的方式將聚吡咯吸附於玻璃基材上形成具透明度與導電度的導電玻璃。

    二次摻雜劑山梨醇(Sorbitol)的加入主要著重於以對甲苯磺酸鹽(p-toluene sulfonic salt)作為一次摻雜劑的影響,實驗結果發現,隨著二次摻雜劑加入的量增加,沉積形成的聚吡咯高分子薄膜分散性增加,此舉會引起聚吡咯導電特性的改變,並使用四點探針(Four-point probe)、場發射電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM)、拉曼光譜儀(Raman Spectrometer)、紫外光-可見光-近紅外光譜儀(UV-VIS-NIR Spectrometer)、傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectrometer, FTIR)、熱重分析儀(Thermogravimetric analyzer, TGA)及電子順磁共振光譜儀(Electron Paramagnetic Resonance Spectroscopy, EPR)等儀器量測,研究當改變一次摻雜劑以及加入二次摻雜山梨醇後,對其導電特性、表面形貌、載子種類及聚吡咯構形做一整合性的分析與探討。


    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 導電高分子之簡介與應用 1 第二章 理論背景與文獻回顧 4 2.1 聚吡咯的基本性質 4 2.1.1 聚吡咯的幾何結構 4 2.1.2 聚吡咯的能帶結構 4 2.2 聚吡咯高分子的合成 7 2.3 聚吡咯的拉曼光譜分析 10 2.4 二次摻雜的效應 12 2.5 聚(3,4-乙烯基二氧塞吩)導電高分子的二次摻雜 14 2.6 研究動機與目的 17 第三章 儀器設備與實驗原理 19 3.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 19 3.2 微拉曼光譜儀(Raman Spectrometer) 20 3.3 紫外光-可見光-近紅外光光譜儀(UV-VIS-NIR Spectrometer) 21 3.4 傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectrometer, FTIR) 23 3.5 熱重分析儀(Thermogravimetric analyzer, TGA) 24 3.6 電子順磁共振光譜儀(Electron Paramagnetic Resonance Spectroscopy, EPR) 25 3.7 四點探針量測儀(Four-point probe) 26 第四章 實驗介紹 28 4.1 實驗使用藥品 28 4.2 實驗方法 29 4.3 半透明導電玻璃製備 30 4.3.1 臨場化學聚合法沉積薄膜製程 30 4.3.2 薄膜成長及反應機制 32 4.4 熱處理 34 第五章 實驗結果與討論 35 5.1 不同一次摻雜劑的聚吡咯高分子薄膜之特性分析 35 5.1.1 導電性量測及其表面形貌觀測 35 5.1.2 拉曼光譜表徵 44 5.1.3 聚吡咯高分子薄膜官能基之鑑定 48 5.1.4 紫外光-可見光-近紅外光光譜之變化 50 5.1.5 電子順磁共振光譜分析 62 5.1.6 熱重分析儀之分析 63 5.2 二次摻雜劑對經對-甲苯磺酸鹽摻雜聚吡咯高分子薄膜之特性分析 66 5.2.1 導電性量測及其表面形貌觀測 66 5.2.2 拉曼光譜表徵 72 5.2.3 聚吡咯高分子薄膜官能基之鑑定 74 5.2.4 紫外光-可見光-近紅外光光譜之變化 76 5.2.5 電子順磁共振光譜之變化 88 5.2.6 熱重分析儀之分析 90 5.3 聚吡咯高分子薄膜一次摻雜與二次摻雜之特性比較 92 第六章 結論 94 參考文獻 95

    1. Chiang, C.K., et al., “Electrical conductivity in doped polyacetylene”, Physical Review Letters, 39, 1977, 1098.
    2. Noach, S., et al., “Microfabrication of an electroluminescent polymer light emitting diode pixel array”, Applied Physics Letters, 69, 1996, 3650-3652.
    3. Smela, E., et al., “Planar microfabricated polymer light-emitting diodes”, Semiconductor Science and Technology, 13, 1998, 433-439.
    4. Fenelon, A.M. and C.B. Breslin, “The electrochemical synthesis of polypyrrole at a copper electrode: corrosion protection properties”, Electrochimica Acta, 47, 2002, 4467-4476.
    5. Tan, C.K. and D.J. Blackwood, “Corrosion protection by multilayered conducting polymer coatings”, Corrosion Science, 45, 2003, 545-557.
    6. Kuwabata, S., H. Yoneyama, and H. Tamura, “Redox behavior and electrochromic properties of polypyrrole films in aqueous-solutions”, Bulletin of the Chemical Society of Japan, 57, 1984, 2247-2253.
    7. De Paoli, M.A., et al., “All polymeric solid state electrochromic devices”, Electrochimica Acta, 44, 1999, 2983-2991.
    8. Larmat, F., J.R. Reynolds, and Y.J. Qiu, “Polypyrrole as a solid electrolyte for tantalum capacitors”, Synthetic Metals, 79, 1996, 229-233.
    9. Smit, M.A., et al., “A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell”, Journal of Power Sources, 124, 2003, 59-64.
    10. Selvaraj, V. and M. Alagar, “Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation”, Electrochemistry Communications, 9, 2007, 1145-1153.
    11. Jeon, S.S., et al., “Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells”, Journal of Materials Chemistry, 21, 2011, 8146-8151.
    12. Murakoshi, K., et al., “Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole”, Solar Energy Materials and Solar Cells, 55, 1998, 113-125.
    13. Kaufman, J.H., et al., “Evolution of polaron states into bipolarons in polypyrrole”, Physical Review Letters, 53, 1984, 1005-1008.
    14. Armes, S.P., “Optimum reaction conditions for the polymerization of pyrrole by iron(iii) chloride in aqueous-solution”, Synthetic Metals, 20, 1987, 365-371.
    15. Sadki, S., et al., “The mechanisms of pyrrole electropolymerization”, Chemical Society Reviews, 29, 2000, 283-293.
    16. Kobayashi, N., K. Teshima, and R. Hirohashi, “Conducting polymer image formation with photoinduced electron transfer reaction”, Journal of Materials Chemistry, 8, 1998, 497-506.
    17. Rinaldi, A.W., et al., “Solid phase photopolymerization of pyrrole in poly(vinylchloride) matrix”, European Polymer Journal, 41, 2005, 2711-2717.
    18. Santos, M.J.L., A.G. Brolo, and E.M. Girotto, “Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry”, Electrochimica Acta, 52, 2007, 6141-6145.
    19. Macdiarmid, A.G. and A.J. Epstein, “The concept of secondary doping as applied to polyaniline”, Synthetic Metals, 65, 1994, 103-116.
    20. Ghosh, S. and O. Inganas, “Nano-structured conducting polymer network based on PEDOT-PSS”, Synthetic Metals, 121, 2001, 1321-1322.
    21. Kim, J.Y., et al., “Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents”, Synthetic Metals, 126, 2002, 311-316.
    22. Jonsson, S.K.M., et al., “The effects of solvents on the morphology and sheet resistance in poly (3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films”, Synthetic Metals, 139, 2003, 1-10.
    23. Crispin, X., et al., “Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study”, Journal of Polymer Science Part B-Polymer Physics, 41, 2003, 2561-2583.
    24. Ouyang, J., et al., “On the mechanism of conductivity enhancement in poly (3,4-ethylenedioxythiophene): poly(styrene sulfonate) film through solvent treatment”, Polymer, 45, 2004, 8443-8450.
    25. Nardes, A.M., et al., “Conductivity, work function, and environmental stability of PEDOT : PSS thin films treated with sorbitol”, Organic Electronics, 9, 2008, 727-734.
    26. Avlyanov, J.K., et al., “In-situ deposited thin films of polypyrrole: Conformational changes induced by variation of dopant and substrate surface”, Synthetic Metals, 84, 1997, 153-154.
    27. Wang, P.C., R.E. Lakis, and A.G. MacDiarmid, “Morphology-correlated electrical conduction in micro-contact-printed polypyrrole thin films grown by in situ deposition”, Thin Solid Films, 516, 2008, 2341-2345.
    28. Mathys, G.I. and V.T. Truong, “Spectroscopic study of thermo-oxidative degradation of polypyrrole powder by FT-IR”, Synthetic Metals, 89, 1997, 103-109.
    29. Furukawa, Y., et al., “Raman-spectra of polypyrrole and its 2,5-c-13-substituted and c-deuterated analogs in doped and undoped states”, Synthetic Metals, 24, 1988, 329-341.
    30. Mikat, J., I. Orgzall, and H.D. Hochheimer, “Raman spectroscopy of conducting polypyrrole under high pressure”, Physical Review B, 65, 2002.
    31. Chen, F.G., et al., “Raman spectroscopic studies on the structural changes of electrosynthesized polypyrrole films during heating and cooling processes”, Journal of Applied Polymer Science, 89, 2003, 3390-3395.
    32. Crowley, K. and J. Cassidy, “In situ resonance Raman spectroelectrochemistry of polypyrrole doped with dodecylbenzenesulfonate”, Journal of Electroanalytical Chemistry, 547, 2003, 75-82.
    33. Kim, H.S., et al., “Doped and de-doped polypyrrole nanowires by using a BMIMPF6 ionic liquid”, Synthetic Metals, 157, 2007, 910-913.
    34. Aguilar-Hernandez, J. and K. Potje-Kamloth, “Optical and electrical characterization of a conducting polypyrrole composite prepared by in situ electropolymerization”, Physical Chemistry Chemical Physics, 1, 1999, 1735-1742.
    35. Molina, J., et al., “Chemical and electrochemical polymerisation of pyrrole on polyester textiles in presence of phosphotungstic acid”, European Polymer Journal, 44, 2008, 2087-2098.
    36. Omastova, M., et al., “Synthesis and structural study of polypyrroles prepared in the presence of surfactants”, Synthetic Metals, 138, 2003, 447-455.
    37. Socrates, G., Infrared and Raman characteristic group frequencies, Third ed., John Wiley & Sons, Ltd, Chichester, England, 2001, 96.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE