研究生: |
黃鵬泰 Huang, Peng-Tai |
---|---|
論文名稱: |
基於集成學習的電子元件足跡圖樣分析 Ensemble Learning Based Electric Components Footprint Analysis |
指導教授: |
何宗易
Ho, Tsung-Yi |
口試委員: |
陳宏明
Chen, Hung-Ming 李淑敏 Li, Shu-Min |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 24 |
中文關鍵詞: | 電子元件足跡圖樣 、集成學習 、深度學習 、分類 、分群 、印刷電路板 |
外文關鍵詞: | PCB, footprint, classification, clustering, ensemble learning, deep learning |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網際網路和電子設備市場的快速增長,印刷電路板的設計流程需要更有效率的設計方法。對於印刷電路板的設計,首先需要構建組件的封裝,其中包含製造信息,例如輪廓、高度和其他將組件放置在印刷電路板上的限制條件。
不同製造商之間的封裝設計規則可能會有所不同,這完全取決於他們的生產技術,所以每個電子元件的足跡圖樣在不同製造商之間也會採用不同樣式。我們可以藉由分析該製造商的印刷電路板封裝資料庫來整理他們的封裝設計規則,最後用於設計相同類型元件的新封裝。
在本文中,我們採用基於集成學習方法的StackNet,使用電子元件足跡圖樣和數值特徵進行分類。
實驗結果表明,我們的方法可以達到比以前的工作更高的正確率。此外,我們對分類結果使用階層式分群法來分析足跡圖樣的設計規則。
Along with a rapid growth in the market of the Internet of Things and electronic devices, the design flow of Printed Circuit Boards (PCBs) requires a more effective design methodology.
As to designing a PCB board, it is necessary to build a component footprint first, which contains manufacturing information, such as outline, height, and other constraints for placing components on a PCB board.
Footprint design can vary between different manufacturers depending on their production technology, which means an electric component can have distinctive footprints.
Therefore, analyzing PCB footprint libraries can help to sort out footprint design rules which can then be used for designing new footprints of the same type of components.
In this thesis, we adopt StackNet based on the ensemble learning method, using footprint images and numerical information for classification. Furthermore, we implement hierarchical clustering on the classification result to analyze the footprint design rules.
Experimental results show our method achieved higher accuracy than previous works.
[1] Y.-J. Ni, Y.-J. Wang, and T.-Y. Ho, “Footprint classification of electric components
on printed circuit boards,” in ACM/IEEE Workshop on Machine Learning for CAD,
pp. 169–174, 2020.
[2] Y.-J. Wang, Y.-T. Chen, Y.-S. F. Jiang, M.-F. Horng, C.-S. Shieh, H.-Y. Wang, J.-H.
Ho, and Y.-M. Cheng, “An artificial neural network to support package classification
for smt components,” in IEEE International Conference on Computer and
Communication Systems, pp. 130–134, 2018.
[3] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in PMLR International Conference on Machine Learning, pp. 6105–6114,
2019.
[4] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an overview,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 2, no. 1,
pp. 86–97, 2012.
[5] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, and H. Cho, “Xgboost: extreme
gradient boosting,” R package version 0.4-2, vol. 1, no. 4, 2015.
[6] A. Liaw and M. Wiener, “Classification and regression by randomforest,” R news,
vol. 2, no. 3, pp. 18–22, 2002.
[7] J. Rabbah, M. Ridouani, and L. Hassouni, “A new classification model based on
stacknet and deep learning for fast detection of covid 19 through x rays images,”
in IEEE International Conference On Intelligent Computing in Data Sciences, pp. 1–8,
2020.
[8] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–140,
1996.
[9] Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,” Journal-
Japanese Society For Artificial Intelligence, vol. 14, no. 771-780, p. 1612, 1999.
[10] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, pp. 241–259,
1992.
[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.