簡易檢索 / 詳目顯示

研究生: 林佳慧
Lin, Chia-Hui
論文名稱: 應用於斑馬魚腦血管系統之血管新生量化的一個三維影像分析系統
A Three-Dimensional Image Analysis System for Quantification of Angiogenesis in the Zebrafish Brain Vascular System
指導教授: 陳永昌
Chen, Yung-Chang
口試委員: 莊永仁
Chuang, Yung-Jen
鐘太郎
Jong, Tai-Lang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 100
中文關鍵詞: 斑馬魚血管新生創傷性腦損傷醫學影像處理量化
外文關鍵詞: zebrafish, angiogenesis, traumatic brain injury, medical image processing, quantification
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   創傷性腦部損傷及其相關疾病是世界各地主要健康問題之一。基於生物醫學的目的,生物醫學家選擇斑馬魚作為模式生物,以了解腦部損傷前後之生理特徵與修復機制其相應於血管新生和血管修復的變化,進而將此生物醫學相關性推論至人類系統,以提供創傷性腦部損傷患者有效的治療方式。在本論文中,我們提出一個應用於斑馬魚腦血管封閉循環系統中的量化評估之三維影像分析系統,分析其中對於血管新生和重塑有意義的資訊,並加以量化以描述其相對於腦損傷與修復機制的情形,最後提供趨勢圖表以利於生物醫學家的研究與觀察。

      應用於斑馬魚腦血管系統之三維共聚焦影像序列,本論文提出的三維影像分析系統可以分為三個部分,自動定位架構、斑馬魚腦血管提取架構、斑馬魚腦血管分析架構,以量化斑馬魚腦血管系統中對於血管新生和重塑有意義的訊息。首先,此系統結合高帽轉換,高增幅濾波器和型態學觀點之雙閾值法,從原始血管三維影像序列中去除染色滲液和其連續共聚焦影像重疊的部分以提取整個血管脈絡。更進一步地,此系統演算法將血管增生分析融合物件檢測與追蹤技術的概念,進而追蹤每一個有意義的特徵,例如:血管分支點和骨幹,以計數血管分支點數量和推算血管長度,並量化這些有意義的參數以提供血管新生和修復的趨勢圖表。根據實驗結果,本系統所提取的血管分支點和血管線段資訊可以確實地描述完整的斑馬魚腦血管系統,且本系統所提供的量化數據和趨勢圖表則可以貼切地意味著斑馬魚腦血管系統的增長趨勢和修復情形。

      總括而言,我們提出一個新的整合系統以增強原始三維共聚焦顯微影像序列中的斑馬魚腦血管系統之信號,進而提取其整個血管脈絡,並分析其中的血管特徵以量化其有意義的參數,進一步利用斑馬魚腦血管系統的時移影像集產生可視化視頻,以達到協助生物醫學家有效地評估神經血管損傷情形並追蹤其再生癒合的過程。


    Trauma brain injury and its related diseases are the major health problem around the world. For biomedical purpose, biomedical scientists select the zebrafish as a model organism, and they want to understand the corresponding changes of angiogenesis and vascular remodeling between brain lesion and reconstruction. Thereby they could extrapolate the biomedical correlations from the zebrafish model to the human model to provide an effective treatment for trauma brain injury patients.

    In this thesis, a three-dimensional image analysis system for quantitative assessment of angiogenesis and vascular remodeling in a closed circulatory system of the zebrafish brain is presented to provide the meaningful information for observation and research by biomedical scientists. The proposed system is composed of three parts such as the proposed automatic positioning scheme, the proposed zebrafish brain vascular extraction scheme and the proposed zebrafish brain vascular analysis scheme to quantify the meaningful angiogenesis information from the three-dimensional confocal imaging sequence of the zebrafish brain vascular system.

    At first, the proposed system combines the top-hat transformation, high-boost filter and morphological double-thresholding to extract the whole vasculatures and remove the dye effusion and the repeated vasculatures in the consecutive images. Furthermore, the proposed algorithm has integrated the object tracking and detection algorithm with the angiogenesis analysis for tracking every meaningful feature such as the vascular branch points and lengths, and then quantifies these meaningful parameters to provide trend graphs of the angiogenesis and vascular remodeling. According to experimental results, the vascular branch points and lengths extracted by the proposed system can indeed describe the complete information of the whole zebrafish brain vascular system, and the quantitative data provided by the proposed system can imply pertinently the growth trend and the remodeling tend.

    In conclusion, we provide a new integrated system to enhance the signals of the zebrafish brain vascular system from a three-dimensional original microscopic image sequence, extract its whole vasculatures, analyze its vascular features, quantify its meaningful parameters and utilize the time-lapse images of the zebrafish brain vascular system to generate a visualization video which could help biomedical researchers to effectively assess the neurovascular damage and to track the regenerative healing process.

    Abstract i Contents iii List of Figures v List of Tables ix Chapter 1: Introduction 1 1.1 Motivation 1 1.2 Model Organism 4 1.3 The Aim of This Thesis 5 1.4 Thesis Organization 11 Chapter 2: Related Work 12 2.1 Overview of Object Tracking and Detection 13 2.1.1 Frame Difference Method 14 2.1.2 Background Subtraction Method 14 2.1.3 Color-Based Separation Method 17 2.1.4 Template-Based Separation Method 18 2.1.5 Region-Based Tracking Method 18 2.1.6 Contour-Based Tracking Method 19 2.1.7 Feature-Based Tracking Method 19 2.2 Overview of Angiogenesis Analysis 20 Chapter 3: Materials and Methods 23 3.1 Overview of the Proposed System 23 3.2 Image Data Source 26 3.2.1 Rearing of Transgenic Fluorescent Vascular Zebrafish Line 27 3.2.2 Stab Lesion Assay 28 3.2.3 Immunohistochemistry 28 3.2.4 Protein Injection 29 3.2.5 Confocal Imaging 29 3.3 Automatic Positioning Scheme 30 3.3.1 Framework for Juvenile Zebrafish 31 3.3.2 Framework for Adult Zebrafish 34 3.4 Zebrafish Brain Vascular Extraction Scheme 40 3.4.1 Top-Hat Transformation 43 3.4.2 High-Boost Filtering 47 3.4.3 Morphological Double-Thresholding 51 3.5 Zebrafish Brain Vascular Analysis Scheme 55 3.5.1 Thinning Algorithm 57 3.5.2 Vascular Skeleton Tracking and Analysis 61 3.6 Quantification Models 68 3.7 Visualization Techniques 69 Chapter 4: Experimental Results and Discussion 72 Chapter 5: Conclusion and Future Works 90 Reference 93

    [1] R.C. Gonzalez and R.E. Woods, “Digital image processing,” Prentice Hall, 3rd ed., Aug. 2007.

    [2] Y. Xiong, A. Mahmood and M. Chopp, “Neurorestorative treatments for traumatic brain injury,” Discovery Medicine, vol.10, no.54, pp.434-42, Nov. 2010.

    [3] K. Arai, G. Jin, D. Navaratna and E.H. Lo, “Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke,” The FEBS Journal, vol.276, no.17, pp.4644-4652.

    [4] M.W. Greve and B.J. Zink, “Pathophysiology of traumatic brain injury,” The Mount Sinai Journal of Medicine, vol.76, pp.97-104, 2009.

    [5] Y. Xiong, A. Mahmood and M. Chopp, “Angiogenesis, neurogenesis and brain recovery of function following injury,” The Current Opinion in Investigational Drugs, vol.11, no.3, pp.298-308, 2010.

    [6] J.J. Ohab, S. Fleming, A. Blesch and S.T. Carmichael, “A neurovascular niche for neurogenesis after stroke,” The Journal of Neuroscience, vol.26, no.50, pp.13007-13016, 2006.

    [7] R. Auerbach, R. Lewis, B. Shinners, L. Kubai and N. Akhtar, “Angiogenesis assays: a critical overview,” Clinical Chemistry, vol.49, no.1, pp.32-40, Jan. 2003.

    [8] G.N. Serbedzija, E. Flynn and C.E. Willett, “Zebrafish angiogenesis: a new model for drug screening,” Angiogenesis, vol.3, no.4, pp.353-359, 1999.

    [9] M.S. Ignatius and D.M. Langenau, “Fluorescent imaging of cancer in zebrafish,” Methods in Cell Biology, vol.105, pp.437-59, 2011.

    [10] C. Ma, C. Parng, W.L. Seng, C. Zheng, W. Catherine and P. McGrath, “Zebrafish - an in vivo model for vivo drug screening,” Innovations in Pharmaceutical Technology, pp.38-45, 2003.

    [11] M.G. Butler, A.V. Gore and B.M. Weinstein, “Zebrafish as a model for hemorrhagic stroke,” Methods in Cell Biology, vol.105, pp.137-161, 2011.

    [12] W.B. Lindquist, “3DMA: a package for geometric analysis of 2- and 3D biphase images,” [Online]. Available: http://www.ams.sunysb.edu/~lindquis/3dma/3dma.html. [Accessed 15 Jul. 2012].

    [13] W.B. Lindquist, “3DMA-Rock: a software package for automated analysis of rock pore structure in 3D computed microtomography images,” [Online]. Available: http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html. [Accessed 15 Jul. 2012].

    [14] W.B. Lindquist and C.M. Weaver, “3DMA-Neuron: a software package for automated neuronal morphology,” [Online]. Available:
    http://www.ams.sunysb.edu/~lindquis/3dma/3dma_neuron/3dma_neuron.html. [Accessed 15 Jul. 2012].

    [15] W.B. Lindquist, “3DMA-Fiber: a software package for automated analysis of fiber structure in 3D computed microtomography images,” [Online]. Available:
    http://www.ams.sunysb.edu/~lindquis/3dma/3dma_fiber/3dma_fiber.html. [Accessed 15 Jul. 2012].

    [16] A. Niemistö, V. Dunmire, O. Yli-Harja, W. Zhang and I. Shmulevich, “Robust quantification of in vitro angiogenesis through image analysis,” Medical Imaging, IEEE Transactions on, vol.24, no.4, pp.549-553, Apr. 2005.

    [17] A. Niemistö, “A MATLAB-based tool for quantification of in vitro angiogenesis,” in Proceedings of the 2nd TICSP Workshop on Computational Systems Biology (WCSB'04), pp.49-50, Jun. 2004.

    [18] C.N. Doukas, I. Maglogiannis and A.A. Chatziioannou, “Computer-supported angiogenesis quantification using image analysis and statistical averaging,” Information Technology in Biomedicine, IEEE Transactions on, vol.12, no.5, pp.650-657, Sept. 2008.

    [19] M.D. Abramoff, P.J. Magalhaes and S.J. Ram, “Image processing with ImageJ,” Biophotonics International, pp.36-42, Jul. 2004.

    [20] T. Boudier and P. Andrey, “3D processing and analysis,” ImageJ Conference Homepage, 2010.

    [21] J. Zhou; S. Chang; D. Metaxas and L. Axel, “Vascular structure and bifurcation detection,” Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on , vol., no., pp.872-875, 12-15 Apr. 2007.

    [22] H. Jiang and N. Alperin, “A new automatic skeletonization algorithm for 3D vascular volumes,” Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE, vol.1, pp.1565-1568, 1-5 Sept. 2004.

    [23] D. Guidolin, G. Albertin and D. Ribatti, “Exploring in vitro angiogenesis by image analysis and mathematical modeling,” in Microscopy: Science, Technology, Applications and Education, A. Méndez-Vilas and J. Diaz, Eds., vol.2, 2010.

    [24] D. Guidolin, A. Vacca, G.G. Nussdorfer and D. Ribatti, “A new image analysis method based on topological and fractal parameters to evaluate the angiostatic activity of docetaxel by using the Matrigel assay in vitro,” Microvascular Research, vol.67, no.2, pp. 117-124, Mar. 2004.

    [25] “Model organism,” In Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Encyclopedia on-line., 15 Jun. 2012 at 23:13. [Online]. Available: http://en.wikipedia.org/wiki/Model_organism. [Accessed 15 Jul. 2012].

    [26] “Zebrafish,” In Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Encyclopedia on-line., 10 Jul. 2012 at 21:21. [Online]. Available: http://en.wikipedia.org/wiki/Zebrafish. [Accessed 15 Jul. 2012].

    [27] S. Isogai, M. Horiguchi and B.M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Developmental Biology, vol.230, no.2, pp.278-301, 15 Feb. 2001.

    [28] C. Zhan, X. Duan, S. Xu, Z. Song and M. Luo, “An improved moving object detection algorithm based on frame difference and edge detection,” Image and Graphics, 2007. ICIG 2007. Fourth International Conference on, pp.519-523, 22-24 Aug. 2007.

    [29] B. Xiao, C. Lu, H. Chen, Y. Yu and R. Chen, “Moving object detection and recognition based on the frame difference algorithm and moment invariant features,” Control Conference, 2008. CCC 2008. 27th Chinese, pp.578-581, 16-18 Jul. 2008.

    [30] S. Ribaric, G. Adrinek and S. Segvic, “Real-time active visual tracking system,” Electrotechnical Conference, 2004. MELECON 2004. Proceedings of the 12th IEEE Mediterranean, vol.1, pp. 231- 234, 12-15 May 2004.

    [31] K.K. Kim, S.H. Cho, H.J. Kim and J.Y. Lee, “Detecting and tracking moving object using an active camera,” Advanced Communication Technology, 2005, ICACT 2005. The 7th International Conference on, vol.2, pp.817-820, 2005.

    [32] Y. Li, J. Yang, R. Wu and F. Gong, “Efficient object tracking based on local invariant features,” Communications and Information Technologies, 2006. ISCIT '06. International Symposium on, pp.697-700, Oct. 18 2006-Sept. 20 2006.

    [33] N. Zarka, Z. Alhalah amd R. Deeb, “Real-time human motion detection and tracking,” Information and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd International Conference on, pp.1-6, 7-11 Apr. 2008.

    [34] S.Y. Chien, Y.W. Huang, B.Y. Hsieh, S.Y. Ma and L.G. Chen, “Fast video segmentation algorithm with shadow cancellation, global motion compensation, and adaptive threshold techniques,” Multimedia, IEEE Transactions on, vol.6, no.5, pp.732- 748, Oct. 2004.

    [35] C. Stauffer and W.E.L. Grimson, “Adaptive background mixture models for real-time tracking,” Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on, vol.2, no., pp.2 vol. (xxiii+637+663), 1999.

    [36] S.M. Yoon and H. Kim, “Real-time multiple people detection using skin color, motion and appearance information,” Robot and Human Interactive Communication, 2004. ROMAN 2004. 13th IEEE International Workshop on, pp.331- 334, 20-22 Sept. 2004.

    [37] J. Yang, M. Zhang and J. Xu, “A visual tracking method for mobile robot,” Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on, vol.2, pp.9017-9021, 2006.

    [38] J. Pers and S. Kovacic, “Computer vision system for tracking players in sports games,” Image and Signal Processing and Analysis, 2000. IWISPA 2000. Proceedings of the First International Workshop on, pp.177-182, 2000.

    [39] G. Wu, W. Liu, X. Xie and Q. Wei, “A shape detection method based on the radial symmetry nature and direction-discriminated Voting,” Image Processing, 2007. ICIP 2007. IEEE International Conference on, vol.6, pp.VI-169-VI-172, Sept. 16 2007-Oct. 19 2007.

    [40] S.J. Mckenna, S. Jabri, Z. Duric, H. Wechsler and A. Rosenfeld, “Tracking groups of people,” Computer Vision and Image Understanding, vol.80, no.1, pp.42-56, Oct. 2000.

    [41] D. Chen and J. Yang, “Robust object tracking via online dynamic spatial bias appearance models,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.29, no.12, pp.2157-2169, Dec. 2007.

    [42] H. Ki, J. Shin and J. Paik, “Wavelet transform-based hierarchical active shape model for object tracking,” Intelligent Signal Processing and Communication Systems, 2004. ISPACS 2004. Proceedings of 2004 International Symposium on, pp. 256-261, 18-19 Nov. 2004.

    [43] P. Tissainayagam and D. Suter, “Contour tracking with automatic motion model switching,” Pattern Recognition, vol.36, no.10, pp.2411-2427, Oct. 2003.

    [44] N. Peterfreund, “Robust tracking of position and velocity with Kalman snakes,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.21, no.6, pp.564-569, Jun. 1999.

    [45] B. Castaneda, Y. Luzanov and J.C. Cockburn, “A modular architecture for real-time feature-based tracking,” Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on, vol.5, pp.V- 685-8 vol.5, 17-21 May 2004.

    [46] X. Yu, C. Xu, Q. Tian and H.W. Leong, “A ball tracking framework for broadcast soccer video,” Multimedia and Expo, 2003. ICME '03. Proceedings. 2003 International Conference on, vol.2, pp. II- 273-6 vol.2, 6-9 Jul. 2003.

    [47] F. Rodriguez, E. Maire, P. Courjault-Radé and J. Darrozes, “The Black Top Hat function applied to a DEM: a tool to estimate recent incision in a mountainous watershed (Estibère Watershed, Central Pyrenees),” Geophysical Research Letters, vol.29, no.6, pp.1085, 2002.

    [48] R.A. Lotufo, L. Rittner, R. Audigier, R.C. Machado and A.V. Saude, “Morphological image processing applied in biomedicine,” Biomedical Image Processing, Biological and Medical Physics, Biomedical Engineering, Part 2, pp.107-129, 2011.

    [49] J. Serra, “Image analysis and mathematical morphology,” Orlando, FL, USA: Academic Press, Inc., 1983. [Online]. Available: http://portal.acm.org/citation.cfm?id=1098652. [Accessed 15 Jul. 2012].

    [50] J. Serra, “Image analysis and mathematical morphology, Vol. 2: Theoretical Advances,” 1st Ed. Academic Press, Feb. 1988. [Online]. Available: http://www.worldcat.org/isbn/0126372411.
    [Accessed 15 Jul. 2012].

    [51] Dougherty, R. Edward and Society of Photo-optical Instrumentation Engineers. An introduction to morphological image processing / Edward R. Dougherty SPIE Optical Engineering Press, Bellingham, Wash., USA: 1992.

    [52] F. Meyer, “Cytologie quantitative et morphologie mathématique,” The`se de docteur-inge´nieur Thesis, Ecole Eds. Mines, Paris 1979.

    [53] E. Maire, D. Lelièvre, A. Brau, M. Lyons, V. Woodward, V. Fafeur and B. Vandenbunder, “Development of an ultralow-light-level luminescence image analysis system for dynamic measurements of transcriptional activity in living and migrating cells,” Analytical Biochemistry, vol.280, no.1, pp.118-127, 10 Apr. 2000.

    [54] R. Wang, “High-boost filtering,” 19 Sep. 2011. [Online]. Available: http://fourier.eng.hmc.edu/e161/lectures/gradient/node2.html. [Accessed 15 Jul. 2012].

    [55] R. Wang, “A thinning algorithm,” 19 Sep. 2011. [Online]. Available: http://fourier.eng.hmc.edu/e161/lectures/morphology/node2.html. [Accessed 15 Jul. 2012].

    [56] L. Lam, S.W. Lee and C.Y. Suen, “Thinning methodologies-a comprehensive survey,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.14, no.9, pp.869-885, Sep. 1992.

    [57] R. Fisher, S. Perkins, A. Walker and E. Wolfart, “Thinning,” 2003. [Online]. Available: http://homepages.inf.ed.ac.uk/rbf/HIPR2/thin.htm. [Accessed 15 Jul. 2012].

    [58] K. Palágyi, “Skeletonization,” [Online]. Available: http://www.inf.u-szeged.hu/~palagyi/skel/skel.html#. [Accessed 15 Jul. 2012].

    [59] C.J. Hilditch, “Linear skeletons from square cupboards,” in Machine Intelligence IV, B. Meltzer and D. Michie, eds., Elsevier, New York, 1969, pp.403-420.

    [60] N.B. Rizvandi, A. Pižurica, F. Rooms and W. Philips, “Skeleton analysis of population images for detection of isolated and overlapped nematode C.Elegans,” 2008 European Signal Processing Conference (EUSIPCO-2008), pp.5, 25-29 Aug. 2008.

    [61] J. Isola and V. Tuominen, “Skeleton intersections (ImageJ plugin),” 2006-2012. [Online]. Available: http://jvsmicroscope.uta.fi/?q=skeleton_intersections. [Accessed 15 Jul. 2012].

    [62] W.B. Lindquist, “The medial axis,” [Online]. Available: http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock_05_primer/ma.html. [Accessed 15 Jul. 2012].

    [63] D. Liang, J.R. Chang, A.J. Chin, A. Smith, C. Kelly, E.S. Weinberg and R. Ge, “The role of vascular endothelial growth factor (VEGF) in vasculogenesis, angiogenesis, and hematopoiesis in zebrafish development,” Mechanisms of Development, vol.108, no.1-2, pp.29-43, 2001.

    [64] “Lighting overview,” MATLAB version R2012a Documentation, Natick, Massachusetts: The MathWorks, Inc., 1984-2010. [Online]. Available: http://www.mathworks.com/help/techdoc/visualize/f1-21767.html. [Accessed 15 Jul. 2012].

    [65] E. Zudaire, L. Gambardella, C. Kurcz and S. Vermeren, “A computational tool for quantitative analysis of vascular networks,” PLoS One., vol.6, no.11, 2011.

    [66] O. Chen, L. Jiang, C. Li, D. Hu, J. Bu and J. Du, ”Haemodynamics-driven blood vessel pruning simplifies brain vasculature during development,” unpublished, Institute of Neuroscience and State Key Laboratory of Neuroscience,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China, 2011.

    [67] “Image-Pro Plus,” Media Cybernetics, Inc., 2012. [Online]. Available: http://www.mediacy.com/index.aspx?page=IPP. [Accessed 15 Jul. 2012].

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE