研究生: |
胡凌彰 Ling-Chang Hu |
---|---|
論文名稱: |
分離閘快閃式記憶體之資料保存模型研究 Investigation of data-retention lifetime modeling for split-gate flash memories |
指導教授: |
金雅琴
Ya-Chin King |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 資料保存 、可靠度 、快閃記憶體 、電壓加速 |
外文關鍵詞: | data retention, reliability, flash memory, voltage acceleration |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了要建立一個準確的分離閘快閃記憶體之資料保存模型,我們首先建立了一個經由讀取電流特性來淬取浮動閘極電位的方法論。在過去的許多研究中指出,由於寫入與抹除的過程會造成氧化層的退化與漏電流的產生,導致快閃記憶體的資料保存生命週期因此縮短。我們考慮了電荷保存定律與缺陷輔助穿透漏電流,分離閘快閃記憶體在低溫烘烤下的資料流失特性就可以準確的被模型化。此外,資料保存生命週期會隨著寫入抹除次數上升而有所退化,這項特性也可以同時被觀察到。
另外,為了發展一個更有效率的資料保存測試方法,我們利用電壓加速的方式取代了傳統利用高溫加速的方式。我們採用了不同的字線電壓來加速資料流失的過程,並藉由外加電壓與資料保存生命週期的關連性,找到了一般操作條件下的資料保存生命週期。因為電壓加速的效率非常高,這樣的方式除了有效的縮短了測試時間,同時仍然可以準確的預測正常操作條件下,快閃記憶體的資料保存特性。
利用前述發展出來的可靠度模型,我們針對不同溫度下的可靠度分析、生命週期與閘極氧化層厚度間的關係、生命週期與元件面積間的關係,逐一的深入加以討論。我們的研究成果指出,對於高可靠度的快閃記憶體產品而言,若要達成十五年的生命週期內,只有百萬分之一的失效率,就必須採用厚度是10奈米以上的閘極氧化層
In developing an accurate lifetime prediction model for post-cycling data retention failure rate of split-gate flash memories, a floating-gate potential extraction method from the measured bit-cell-current data is proposed. Stress induced leakage current through the coupling oxide caused by source side channel hot electron injection during program operation is the major cause for post-cycling data retention failure bits. Considering charge conservation and trap-assist-tunnelling (TAT) leakage current, the charge gain behavior under low temperature bake is modelled and the failure rate under various measured conditions can be predicted precisely. We have found that data retention lifetime decrease as P/E cycling increases, while failing bits increase with numbers of P/E cycling.
In addition, in order to develop a fast statistical testing methodology to predict post-cycling low-temperature-data-retention (LTDR) lifetime of split-gate flash memories, word-line stress is used to accelerate the charge gain effect responsible for bit-cell-current (BCC) reduction among the tail-bits. To find out the voltage dependence on data retention lifetime, various word-line stress voltages are performed to enhance the charge gain effect of the erased-state cells. At an accelerated state, word-line stress lifetime tests can be completed within a much shorter test period and still provide accurate lifetime prediction for embedded flash memory products.
Based on the reliability statistics and TAT-related lifetime model introduced in chapter three, the thermal-acceleration reliability statistics, gate-oxide thickness dependence, and device area (cells per array/chip) dependence on data-retention lifetime of high-reliability flash memory products are comprehensively discussed. According to the gate-oxide dependence on data-retention lifetime, a gate-oxide thickness of 10nm is required to achieve a single-ppm parts-level failure rate in fifteen years for high-reliability flash memory products.
References
[1] D. Kahng, and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., vol.46, pp. 1283, 1967.
[2] F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, S. Tanaka, “A New Flash E2PROM Cell Using Triple Polysilicon Technology,” IEDM Tech. Dig., pp. 464-467, 1984.
[3] J. V. Houdt, G. Groeseneken, and H. E. Maes, “An analytical model for the optimization of source-side injection flash EEPROM devices,” IEEE Trans. Electron Devices, vol. 42, pp. 1314–1320, 1995.
[4] Y. Ma, C. S. Pang, J. Pathak, S. C. Tsao, and C. F. Chang, “A novel high density contactless flash memory array using split-gate source-side injection cell for 5 V-only application,” in 1994 Symp. VLSI Technology Dig. Tech. Papers, vol. 5A, pp. 49–50.
[5] K. Chang, W. Chen, C. Swift, J. M. Higman, W. M. Paulson, and K. Chang, “A new SONOS memory using source-side injection for programming,”IEEE Electron Device Lett., vol. 19, pp. 253–255, 1998.
[6] A. T. Wu, T.-Y. Chan, P.-K. Ko, and C. Hu, “A novel high-speed, 5-volt programming EPROM structure with source-side injection,” in IEDM Tech. Dig., 1986, pp. 584–587.
[7] M. Suhail, T. Harp, J. Bridwell, and P.J. Kuhn, “Effects of Fowler Nordheim tunneling stress vs. Channel Hot Electron stress on data retention characteristics of floating gate non-volatile memories”, in Proc. Int. Reliability Physics Symp., 2002, pp.439-440.
[8] L. Larcher, P. Pavan, “Statistical simulations for flash memory reliability analysis and prediction” IEEE Trans. Electron Devices, vol. 51, pp. 1636-1643, 2004.
[9] Ling-Chang Hu, An-Chi Kang, I-Tai Liu, Yao-Feng Lin, Kenneth Wu, and Ya-Chin King, “Statistical modeling for post-cycling data retention of split-gate flash memories”, in Proc. Int. Reliability Physics Symp., 2004, pp.643-644.
[10] Kamohara S., D. Park, C. Hu, “Deep-trap SILC (stress induced leakage current) model for nominal and weak oxides”, in Proc. Int. Reliability Physics Symp., 1998, pp.57-61.
[11] D. Ielmini, A. Spinelli, A. Lacaita, L. Confalonieri, A. Visconti, “New technique for fast characterization of SILC distribution in FLASH arrays”, in Proc. Int. Reliability Physics Symp., 2001, pp.73-80.
[12] D. Baglee, M. Smayling, “The effects of write/erase cycling on data loss in EEPROMs”, in IEDM Tech. Dig., 1985, pp. 624-626.
[13] K. Naruke, S. Taguchi, M. Wada, “Stress induced leakage current limiting to scale down EEPROM tunnel oxide thickness”, in IEDM Tech. Dig., 1988, pp. 424-427.
[14] J. Kim, S. Ahn, “Improvement of the tunnel oxide quality by a low thermal budget dual oxidation for FLASH memories”, IEEE Electron Device Letters, 1997, pp.385-387.
[15] E. Arai, T. Maruyama, R. Shirota, “Extended data retention process technology for highly reliable FLASH EEPROMs of 106 to 107 W/E cycles”, in Proc. Int. Reliability Physics Symp., 1998, pp.378-382.
[16] A. Modelli, F. Gilardoni, D. Ielmini, A. Spinelli, “A new conduction mechanism for anomalous cells in thin oxide flash EEPROMs”, in Proc. Int. Reliability Physics Symp., 2001, pp. 61-65.
[17] J. De Blauwe, J. Van Houdt, D. Wellekens, R. Degraeve, Ph.Roussel, L. Haspeslagh, L. Deferm, G. Groeseneken, H. E.Maes, “A new quantitative model to predict SILC-related disturb characteristics in flash EEPROM devices”, in IEDM Tech. Dig., 1996, pp. 343-346.
[18] Ielmini D., Spinelli A.S., Lacaita A.L., Modelli A, “Equivalent cell approach for extraction of the SILC distribution in flash EEPROM cells”, IEEE Electron Device Letters, 2002, pp.40-42.
[19] A. Scarpa, Guoqiao Tao, J. Dijkstra, F. G. Kuper, “Fast-bit-limited lifetime modeling of advance floating gate non-volatile memories”, Integrated Reliability Workshop Final Report, 2000, pp.24–28.
[20] F. Schuler, G. Tempel, H. Melzner, M. Jacob, P. Hendrickx, D. Wellekens, J. V. Houdt, “Failure rate prediction and accelerated detection of anomalous charge loss in flash memories by using an analytical transient physics-based charge loss model”, Jpn. Journal Applied Physics., 2002, pp.2650-2653.
[21] Kameyama H., Okuyama Y., Kamohara S., Kubota K., Kume H., Okuyama K., Manabe Y., Nozoe A., Uchida H., Hidaka M., Ogura K., “A new data retention mechanism after endurance stress on flash memory”, in Proc. Int. Reliability Physics Symp., 2000, pp.194–199.
[22] De Salvo B., Ghibaudo G., Pananakakis G., Reimbold G., Mondond F., Guillaumot B., Candelier P, “Experimental and theoretical investigation of nonvolatile memory data-retention”, IEEE Trans. Electron Devices, 1999, pp.1518-1524.
[23] Paul A. Tobias, and David C. Trindade, Applied Reliability, ch. 7, pp166-213.
[24] W. J. Bertram, “Yield and reliability”, in VLSI Technology second edition, S. M. Sze, Ed. New York.: McGraw-Hill, 1988, pp.612-655.
[25] E. Y. Wu, W. W. Abadeer, L. K. Han, S. H. Lo, and G. Hueckel, “Challenges for accurate reliability projections in the ultra-thin oxide regime”, in Proc. Int. Reliability Physics Symp., 1999, pp.57–65.
[26] J. H. Stathis, and D.J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage”, in IEDM Tech. Dig., 1998, pp. 167-170.
[27] R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. E. Maes, “A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides”, in IEDM Tech. Dig., 1995, pp. 863-866.
[28] C. T. Sah, “Origin of interface states and oxide charges generated by ionizing radiation”, IEEE Trans. Nuclear Science, pp.1563-1568, 1976.
[29] J. T. Duane, “Learning curve approach to reliability monitoring”, IEEE Trans. Aerosp, pp. 563, 1964.
[30] Paul A. Tobias, and David C. Trindade, Applied Reliability, ch. 8, pp. 219.
[31] P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in n-channel IGFET,” IEEE Trans. Electron Devices, vol. ED-26, no. 4, pp. 520-532, 1979.
[32] C. Hu, “Lucky-electron model of hot-electron emission,” in IEDM Tech. Dig., pp. 22-25, 1979.
[33] E. Takeda, H. Kume, T. Toyabe and S. Asai, “Submicrometer MOSFET structure for minimizing hot carrier generation,” IEEE Trans. Electron Devices, pp. 611-618, 1982.
[34] I.C. Chen, J.Y. Choi, T.Y. Chan, T.C. Ong and C. Hu, “The effect of channel hot carrier stressing on gate oxide integrity in MOSFET,” International Reliability Physics Symposium, pp. 1-7, 1988.
[35] E. Takeda, H. Kume, T. Toyabe and S. Asai, “Submicrometer MOSFET structure for minimizing hot carrier generation,” IEEE Trans. Electron Devices, pp. 611-618, 1982.
[36] W. Shockley, “Problems related to p-n junction in silicon,” Solid-State Electron., vol. 2, pp. 35-67, 1961.
[37] J. F. Verwey, R. P. Kramer and B. J. de Maagt, “Mean free path of hot electrons at the surface of boron-doped silicon,” J. Appl. Phys., vol. 46, pp. 2612-2619, 1975.
[38] T.-H. Ning, C. M. Osburn and H.-N. Yu, “Emission probability of hot electrons from silicon into silicon dioxide,” J. Appl. Phys., vol. 48, pp. 286-293, 1977.
[39] S. Tam, P.-K. Ko and C. Hu, “Lucky-electron model of channel hot electron injection in MOSFET’s,” IEEE Trans. Electron Devices, pp. 1116-1125, 1984.
[40] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” J. Appl. Phys., vol.40, no.1, pp. 278-283, 1969.
[41] Z. A. Weinberg, “On tunneling in MOS structure,” J. Appl. Phys., vol. 53, pp. 5052, 1982.
[42] B. Ricco and M. V. Fischetti, “Temperature dependence of the currents in silicon dioxide in the high field tunneling regime,” J. Appl. Phys., vol. 55, pp. 4322, 1984.
[43] C. Chang, S. Haddad, B. Swaminathan, and J. Lien, “Drain avalanche and hole-trapping induced gate leakage in thin-oxide MOS devices”, IEEE Electron Device Letters, pp. 588, 1988.
[44] Y. Igura, H. Matsuoka, and E. Takeda, “New device degradation due to “cold” carriers created by band-to-band tunneling”, IEEE Electron Device Letters, pp. 227, 1989.
[45] K. Yoshikawa, S. Mori, E. Sakagami, Y. Ohshima, Y. Kaneko, and N. Arai, “Lucky-hole injection induced by band-to-band tunneling leakage in stacked gate transistors”, in IEDM Tech. Dig., 1990, pp. 577.
[46] G. Verma, and N. Mielke, “Reliability performance of ETOX based Flash memories”, in Proc. Int. Reliability Physics Symp., 1988, pp.158.
[47] S. Haddad, C. Chang, A. Wang, J. Bustillo, J. Lien, T. Montalvo, and M. Van Buskirk, “An investigation of erase-mode dependent hole trapping in Flash EEPROM momery cell”, IEEE Electron Device Letters, pp. 514, 1990.
[48] S. Haddad, C. Chang, B. Swaminathan, and J. Lien, “Degradations due to hole trapping in Flash memory cells”, IEEE Electron Device Letters, pp. 117, 1989.
[49] Ielmini D., Spinelli A.S., Lacaita A.L., Modelli A, “Equivalent cell approach for extraction of the SILC distribution in flash EEPROM cells”, IEEE Electron Device Letters, 2002, pp.40-42.
[50] A. Scarpa, Guoqiao Tao, J. Dijkstra, F. G. Kuper, “Fast-bit-limited lifetime modeling of advance floating gate non-volatile memories”, Integrated Reliability Workshop Final Report, 2000, pp.24–28.
[51] F. Schuler, G. Tempel, H. Melzner, M. Jacob, P. Hendrickx, D. Wellekens, J. V. Houdt, “Failure rate prediction and accelerated detection of anomalous charge loss in flash memories by using an analytical transient physics-based charge loss model”, Jpn. Journal Applied Physics., 2002, pp.2650-2653.
[52] A. Hoefler, J.M. Higman, T. Harp, P.J. Kuhn, “Statistical modeling of the program/erase cycling acceleration of low temperature data retention in floating gate nonvolatile memories”, in Proc. Int. Reliability Physics Symp., 2002, pp.21-25.
[53] P.J. Kuhn, A. Hoefler, T. Harp, B. Hornung, R. Paulsen, D. Burnett, J.M. Higman, “A reliability methodology for low temperature data retention in floating gate non-volatile memories”, in Proc. Int. Reliability Physics Symp., 2001, pp.266-270.
[54] Guoqiao Tao, Scarpa A., Valk H., van Marwijk L., van Dijk K., Kuper F., “Fast wafer level monitoring of stress induced leakage current in deep sub-micron embedded non-volatile memory processes”, Integrated Reliability Workshop Final Report, 2002, pp.76–78.
[55] Papadas C., Pananakakis G., Ghibaudo G., Riva C., Pio F., Ghezzi P., “Modeling of the intrinsic retention characteristics of FLOTOX EEPROM cells under elevated temperature conditions”, IEEE Trans. Electron Devices, 1995, pp. 678-682.
[56] Wang R.S.C., Shen R.S.J., Hsu C.C.H., “Neobit-high reliable logic non-volatile memory (NVM)”, in Proc. IPFA Symp., 2004, pp.111-114.
[57] M. Herrmann, A. Schenk, “Field and high-temperature dependence of the long term charge loss in erasable programmable read only memories: Measurements and modeling”, Jpn. Journal Applied Physics., 1995, pp.4522-4540.
[58] H. Nozawa, S. Kohyama, “A thermionic electron emission model for charge retention in SAMOS structure”, Jpn. Journal Applied Physics., 1982, pp.L111-L112.
[59] Kameyama H., Okuyama Y., Kamohara S., Kubota K., Kume H., Okuyama K., Manabe Y., Nozoe A., Uchida H., Hidaka M., Ogura K., “A new data retention mechanism after endurance stress on flash memory”, in Proc. Int. Reliability Physics Symp., 2000, pp.194–199.
[60] H.P. Belgal, N. Righos, I. Kalastirsky, J.J. Peterson, R. Shiner, N. Mielke, “A new reliability model for post-cycling charge retention of flash memories”, in Proc. Int. Reliability Physics Symp., 2002, pp.7-20.
[61] Brand A., Wu K., Pan S., Chin D., “Novel read disturb failure mechanism induced by FLASH cycling”, in Proc. Int. Reliability Physics Symp., 1993, pp.127-132.
[62] De Salvo B., Ghibaudo G., Pananakakis G., Reimbold G., Mondond F., Guillaumot B., Candelier P, “Experimental and theoretical investigation of nonvolatile memory data-retention”, IEEE Trans. Electron Devices, 1999, pp.1518-1524.
[63] Kamohara S., D. Park, C. Hu, “Deep-trap SILC (stress induced leakage current) model for nominal and weak oxides”, in Proc. Int. Reliability Physics Symp., 1998, pp.57-61.
[64] D. Ielmini, A. Spinelli, A. Lacaita, L. Confalonieri, A. Visconti, “New technique for fast characterization of SILC distribution in FLASH arrays”, in Proc. Int. Reliability Physics Symp., 2001, pp.73-80.
[65] Sohrab Kianian, Amitay Levi, Dana Lee, and Yaw-Wen Hu, “A novel 3 volt-only, small sector erase, high density Flash E2PROM,” in Proc. Symp. on VLSI Technology, p.71-p.72, 1994.
[66] Radu M. Barsan, “Analysis and Modeling of Dual Gate MOSFETs”, IEEE Trans. Electron Devices, 1981, pp.523 -534.
[67] Ling-Chang Hu, An-Chi Kang, J.R. Shih, Yao-Feng Lin, Kenneth Wu, Ya-Chin King, “Statistical modeling for post-cycling data retention of split-gate flash memories”, IEEE Trans. Device and Materials Reliability, 2006, pp. 60-66.
[68] Ling-Chang Hu, An-Chi Kang, T.I. Wu, Eric Chen, J.R. Shih, H.W. Chin, Yao-Feng Lin, Kenneth Wu, Ya-Chin King, “A voltage acceleration lifetime model to predict post-cycling LTDR characteristics of split-gate flash memories”, in Proc. Int. Reliability Physics Symp., 2005, pp.664-665.
[69] Ling-Chang Hu, An-Chi Kang, Eric Chen, J.R. Shih, Yao-Feng Lin, Kenneth Wu, Ya-Chin King, “Gate stress effect on low temperature data retention characteristics of split-gate flash memories", Journal of Microelectronic Reliabilities, 2005, pp.1331-1336.
[70] R. Moazzami, C. Hu, “Stress-induced current in thin silicon dioxide films”, in IEDM Tech. Dig., 1992, pp.139-142.
[71] Paul A. Tobias, David C. Trindade, Applied Reliability, ch.2, pp28-43.