研究生: |
陳奕中 Chen,Yi Chung |
---|---|
論文名稱: |
二維奈米電漿光晶格中凍結光熱對流後的 微米粒子特性 Freezing photothermal convection of micro particles in two dimensional nanoplasmonic optical lattice |
指導教授: |
楊雅棠
Yang,Ya Tang |
口試委員: |
黃哲勳
陳奕帆 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 光學鑷子 、電漿子 、光熱對流 、熱膨脹係數 、低溫 、近場光學梯度力 |
外文關鍵詞: | optical tweezer, plasmonic, photothermal convection, thermal expansion coefficient, low temperature, near-field optical gradient forces |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光熱對流是在高光功率下使粒子能穩定的被光學鑷子捕捉的一個主要障礙。粒子被近場光學捕捉力捕捉後,往往會受到熱對流干擾使粒子隨熱對流消失於光學晶格中。在此我們示範一個方法,利用水在低溫時膨脹係數趨近於零的特性,此特性能夠有效地抑制電漿子光熱效應產生的光熱對流。
我們知道使用一個非完全對焦的高斯光束照射於一個簡單方形奈米電漿陣列時,會產生可捕捉粒子的二維光學晶格。我們觀察到這些螢光微粒在室溫下,會因為光熱效應所造成的熱對流運輸現象,粒子將隨著熱對流往液體表面移動,所以粒子一旦進入光晶格中就會消失於光晶格的表面。與之相反的,在低溫下,我們觀察到即使提高光功率,近場光學梯度力依然能夠穩定的使大小為1um的粒子被二維光學晶格捕捉,而不受到光熱對流的干擾。
因此這種低溫技術將可大大增加可用的光功率,進而提高光學鑷子捕捉微小粒子的能力。甚至可以運用在含蛋白質的生物上,避免光熱效應破壞,導致黏滯於晶片,使晶片壽命提升。
Photothermal convection has been a major obstacle for stable particle trapping in plasmonic optical tweezer at high optical power. Here we demonstrate a strategy to suppress the plasmonic photothermal convection by using near zero thermal expansion coefficient of water at low temperature. A simple square nanoplasmonic array is illuminated with a loosely Gaussian beam to produce two dimensional optical lattice for trapping of nanoparticle. We observe stable particle trapping due to near-field optical gradient forces at elevated optical power at low temperature. In contrast, at the sample optical power at room temperature, the particles will get expelled, and disappear once they enter into the optical lattice. This technique will greatly increase usable optical power and enhance the trapping capability of plasmonic optical tweezer.
1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290, (1986).
2. D. Grier “A revolution in optical manipulation, “Nature 424, 810-816,(2003).
3. W. H. Wright, G. J Sonek and M. W. Berns, “Radiation on trapping forces with optical tweezers,” Appl. Phys. Lett., 63(6), 715-717, (1993).
4. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant “Plasmon nano optical tweezer,” Nature Photon. 5, 915-919, (2009).
5. J. S. Huang and Y. T. Yang, “The origin and future of plasmonic optical tweezer,” Nanomaterials, 5, 1048- 1065, (2015).
6. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett.96, 238101, (2006).
7. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nature Phys. 3, 477-480, (2007).
8. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 183694, (2008).
9. Y. Pang and R. Gordon, “Optical trapping of single protein,” Nano Lett. 12, 402−406, (2012).
10. K. Y. Chen, A. T. Lee, C. C. Hung, J. S. Huang, and Y. T. Yang, “Transport and trapping in two-dimensional nanoscale plasmonic optical lattice,” Nano Lett. 13, 4118-4122, (2013).
11. A. Cuche, B. Stein, A. Canguier-Durand, E. Devaux, C. Genet, and T. W. Ebbesen, “Brownian motion in a designer force field: dynamical effects of negative refraction on nanoparticles,” Nano Lett., 12, 4329-4332, (2012).
12. Z. Kang et al., “Trapping and assembling of particles and live cells on large-scale random gold nano-island substrates,” Sci. Rep., DOI: 10.1038, (2015).
13. J. Kim Joining plasmonics with microfluidics: from convenience to inevitability Lab Chip, 12, 3611-3623, (2012).
14. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Lett., 9(3), 1139-1146, (2009).
15. G. Baffou, R. Quidant and J. F. Garcia de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano, 4(2), 709-716, (2010).
16. G. Baffou, R. Quidant and C. Girad, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B, 82(16), DOI:10.1103, (2010).
17. J. S. Donner, G. Baffou, D. McCloskey and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano, 5(7), 5457 (2011).
18. G. Baffou, et al., “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano, 6(3), 2452-2458, (2012).
19. G. Baffou, et al., “Photoinduced heating of nanoparticle arrays,” ACS Nano, 7(8), 6478-6488, (2013).
20. B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Jr. Toussaint, “Understanding and controlling plasmoninduced convection, “ Nat. Commun., 5, DOI:10.1038, (2014).
21. T. P. Yang, G. Yossifon, and Y. T. Yang, “ Characterization of the near-field and convectional transport behavior of micro and nanoparticles in nanoscale plasmonic optical lattices,” Biomicrofluidics, 10, 034102, (2016).
22. K. Wang, E. Schonbrun, P. Steinvurzel and K. B. Crozier Nat. Commun., 2, DOI:10.10138, (2011).
23. S. MacIntyre, J. R. Romero, G. W. Kling, “Spatial-temporal variability in surface layer deepening and lateral advection in an embayment of Lake Victoria, East Africa,” Limnol. Oceanogr., 47(3), 656–671 (2002).
24. M. L. V. Ramires, et al., “Standard reference data for the thermal conductivity of water,” J. Phys. Chem. Ref. Data, 24, 1377-1381 ,(1995).
25. S. A. Tatarkova, W. Sibbett, and K. Dholakia, “Brownian particle in an optical potential of the washboard type,” Phys. Rev. Lett., 9(3), 038101, (2003).
26. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, Jr., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting” Nano Lett., 12, 796 (2012).
27. T. Shoji, et al., “Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C, 117, 2500−2506, (2013).