簡易檢索 / 詳目顯示

研究生: 陳盈汝
Ying-ru Chen
論文名稱: 在矽基板上以PECVD製作摻鍺二氧化矽平面波導及其熱極化產生之非線性光學特性分析
A study on the nonlinear optical properties of Ge-doped SiO2 planar waveguide on Si substrate prepared by PECVD.
指導教授: 趙煦
Shiuh Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 70
中文關鍵詞: 非線性光學摻鍺二氧化矽平面波導熱極化
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以PECVD在矽上製作以摻鍺二氧化矽為波導核心層(core)、上下包覆層(cladding)皆為二氧化矽的三層平面波導結構,施以熱極化誘發其產生二階非線性係數,並架設馬克-詹德干涉儀量測系統以量測其值大小,希望未來能應用在光纖通訊上。
    首先利用已知的參數以BeamPROP和BPM_cad模擬軟體模擬估計確定波導的結構,再以PECVD實際製作;並利用菱鏡耦合儀量測實際薄膜的參數。波導製作完成後,再施以熱極化以誘發波導內的鍺缺陷使其產生二階非線性係數。
    最後再架設馬克-詹德干涉儀,以量測波導內經過熱極化 後誘發產生的非線性係數。首先為了確定我們自行架設的量測系統是否能正確的工作,故先量測已知非線性係數γ33 =30.9 pm/V、γ13= 9.6 pm/V的非線性晶體-LiNbO3,由我們自行架設的馬克-詹德干涉儀量測後的結果其γ33值約為29.49 ± 1.37,量測修正係數為αS=1.41 pm/V;而其γ13值約為9.15 ± 0.7 pm/V,量測修正係數為αP=0.45 pm/V。量測的誤差都在10 %以內。
    至於量測摻鍺二氧化矽波導經過熱極化誘發產生的非線性係數的部分,就目前量測的結果看不出熱極化前後波導非線性值的變化。至於原因為何目前還無法確定,因此下一步希望能找出問題的癥結並嘗試解決,希望未來能利用我們架設的馬克-詹德干涉儀量測出摻鍺二氧化矽波導經過熱極化誘發產生的非線性係數。


    第一章 緒 論 1 1.1 前言 1 1.2 於矽上製作摻鍺波導之非線性元件技術文獻回顧 2 1.3 非線性係數的由來 4 第二章 摻鍺二氧化矽波導製作 10 2.1 製程前之初步程式模擬 10 2.2 PECVD製程原理簡介 20 2.3 實際製程與模擬參數修正 24 2.3.1 菱鏡耦合儀量測結果分析 24 2.3.2 BPM_cad模擬分析 28 2.3.3 BeamPROP模擬 30 第三章 非線性的產生 32 3.1 非線性產生機制簡介 32 3.2 熱極化產生非線性 38 第四章 非線性係數量測 40 4.1 電光係數量測-馬克-詹德干涉儀工作原理 40 4.2 量測非線性晶體-鈮酸鋰( LiNbO3 ) 49 4.2.1 LiNbO3量測系統架設簡介 49 4.2.2 LiNbO3量測結果分析 51 4.3 非線性波導量測結果分析 53 4.3.1 非線性波導量測系統架設簡介 53 4.3.2 非線性波導量測結果分析 55 第五章 結論與未來展望 56 5.1 結論 56 5.2 未來展望 58 附 錄 60 A. Mach Zehnder Interferometer 60 B. Lock-In Amplifier 64 C. 250 series video amplifier 68 參考文獻 69

    [1] U. Österberg ,and W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber”,Opt. Lett., Vol. 11, pp. 516-518, 1986.
    [2] R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica” Opt. Lett. Vol. 16, Issue 22, pp. 1732-1734, November 1991.
    [3] John J. Kester, Paul J. Wolf, and W. Roc White, “Second-harmonic generation in planar waveguides of doped silica”, Opt. Lett., Vol. 17, Issue 24, pp. 1779-1781, December 15, 1992.
    [4] Jesper Arentoft, Kjeld Pedersen, Sergey I. Bozhevolnyi, Martin Kristensen, Ping Yu, and Christian B. Nielsen, “Second-harmonic imaging of poled silica waveguides”, Appl. Phys. Lett., Vol. 76, Issue 1, pp. 25-27, 3 January 2000.
    [5] 陳淮義, “熱極化熔融石英玻璃平面基版之非線性光學特性探討與準相位匹配倍頻產生元件之研製”,91級博士論文,國立清華大學電機工程學系
    [6] 詹博文, “利用電漿輔助化學器相沈積製作摻鍺二氧化矽平面波導及其非線性與光學特性探討”,92級碩士論文,清華大學電機所光電組
    [7] Edward D. Palik, “Handbook of Optical Constants of Solids”,
    [8] Marc Madou “Fundamentals of Microfabrication”©1997 BY CRC Press LLC
    [9] X. M. Liu, M. D. Zhang, “Theoretical Study for Thermal/Electric Field Poling of Fused Silica ”, Jpn. J. Appl. Phys. Vol. 40, pp. 4069-4076, 2001.

    [10] T. E. Tsai, M. A. Saifi, E. J. Friebele, D. L. Griscom, and U. Österberg, “Correlation of defect centers with second-harmonic generation in Ge-doped and Ge-P-doped silica-core single-mode fibers”, Opt. Lett., Vol. 14, No. 18, pp. 1023-1025, 1989.
    [11] J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2-SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser”, Phys. Rev. B, Vol. 52, pp. 1661-1665, 1994.
    [12] M. Takahashi, T. Fujiwara, T. Kawachi, and A. J. Ikushima, “Defect formation in GeO2-SiO2 glass by poling with ArF laser excitation”,Appl. Phys. Lett., Vol. 71, Issue 8, pp. 993-995, 1997.
    [13] A. J. Ikushima, T. Fujiwara, and K. Saito, “silica glass : A material for photonics”, J. Appl. Phys., Vol. 88, pp. 1201-1213, 2000.
    [14] Leanne J. Henry, “Correlation of Ge E′ defect sites with second-harmonic generation in poled high-water fused silica”, Opt. Lett., Vol. 20, No. 15, pp. 1592-1594, 1995.
    [15] Bahaa E. A. Saleh, and Malvin Carl Teich, “Fundamentals of Photonics”, Wiley Interscience.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE