研究生: |
江貞怡 Chiang, Chen-I |
---|---|
論文名稱: |
高頻近紅外光發光二極體研製 The developement of high-speed near-infrared light emitting diodes |
指導教授: |
吳孟奇
Wu. Meng-Chyi 何充隆 Ho, Chong-Long |
口試委員: |
何充隆
蘇住裕 劉埃森 吳孟奇 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | LED 、高頻 、近紅外光 |
外文關鍵詞: | LED, High speed, Near-infrared |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
長久以來在農業生產上,螢光燈管與高壓鈉燈是最主要也最普遍的人工光源。如何補光、提高補光均勻度、調整光質與研發更高效率的人工光源一直是一門很重要的課題。在固態光源應用中,除使用常見的直流或低頻(Hz-kHz)脈寬調變(PWM)外,LED 具有傳統光源無法比擬的 MHz 高頻調變能力,進一步拓寬了應用領域。例如在以 LED 作為人造生物光源的研發上,MHz 的照射頻率輔以選擇適當的光源波長、照射程序,可促使生物對能量的吸收與應用更具效率,將可解決人類未來糧食危機的難題。
本論文中,主要探討AlGaAs 高頻近紅外光發光二極體之研製及特性分析。首先,我們先設計可達高頻及兼顧發光亮度的磊晶結構,然後針對此磊晶結構設計出適當的光罩,根據光罩設計不同的發光區半徑,再來探討不同發光區半徑對於元件電性及光性的影響。我們利用黃光微影技術定義出發光區半徑,然後利用電漿增強化學氣相沉積(PECVD)、蒸鍍機(Thermal Evaporator)、快速升溫退火爐(RTA)及電漿輔助原子層沈積(PEALD)與濕式蝕刻製程,找出最佳製程條件以利於利用在高頻近紅外光發光二極體製程上。
我們利用光與電特性的量測,分析元件特性。在電特性方面,利用I-V曲線可求得切入電壓(Cut-in voltage)以及活化能(Activation energy);利用C-V曲線可得到內建電位(bilt-in voltage)以及濃度。在光特性方面,可透過積分球以及光檢測器量測出L-I曲線以及發散角。最後,我們將元件封裝在SMA上,可量出不同發光區半徑的頻率響應(frequency response)。
For a long time in agricultural production, fluorescent lamps and high pressure sodium lamp is the most important and the most common artificial light. How to improve the light uniformity, adjust the light quality and research and development of more efficient artificial light has been a very important issue. In the solid state light source applications, in addition to the use of DC or low frequency (Hz-kHz) pulse width modulation (PWM). LED with conventional light sources can not match MHz high-frequency modulation, further broadening the application field. As the development of artificial biological source such as LED. Frequency in MHz, supplemented by selecting the appropriate wavelength of light source, irradiation procedures, can contribute to the bio-energy absorption and more efficient and will solve the problems of mankind's future food crisis.
This paper focuses on the AlGaAs high-frequency near-infrared light-emitting diodes development and characterization. First, we design up to high frequency and the balance between the brightness of the epitaxial structure, and then design the appropriate mask for this epitaxial structure, according to the radius of the mask design different emitting area, again to explore the different light-emitting area radius for the characterization of electrical and optical. We use the photolithography technology to define the light radius, then the use of plasma enhanced chemical vapor deposition (PECVD), thermal evaporator, rapid thermal annealing furnace (RTA), plasma enhanced atomic layer deposition (PEALD) and the wet etching process to identify the optimum process conditions in order to facilitate use at high frequency near-infrared light-emitting diode process. We use the measurement of the optical and electrical properties, and analysis of device characteristics. In electrical characteristics, the cut-in voltage and activation energy can be obtained by I-V curve. The built-in potential and the concentration can be obtained by C-V curve. In optical characteristics, L-I curves and the divergence angle can be measured by integrating sphere and photodetector. Finally, we will be the component package in the SMA, it can measure the frequency response of the different light-emitting area radius.
[1] http://www.optoiq.com/index/market-research.html
[2] http://www.shimz.co.jp/english/theme/dream/greenfloat.html
[3] R. J. Bula, D. J. Tennessen, R. C. Morrow and T. W. Tibbitts, “Light Emitting Diodes as A Plant Lighting Source,” in Proc. Int. Lighting in Controlled Environments Workshop, 1994.
[4] http://seed.agron.ntu.edu.tw/vtseed/germin/ger7.htm
[5] LED植物蔬菜種植培養箱
http://tw.ttnet.net/chinese-site/site/com/40010332/product/18/refno/4496080/
[6] R. C. Jao and W. Fang, “Development of a Flexible Lighting System for Plant Related Research Using Super Bright Red and Blue Light Emitting Diodes,” Acta Hort., vol. 578, pp. 133-139, 2001.
[7] R. C. Jao and W. Fang, “Effects of Frequency and Duty Ratio on the Growth of Potato Plantlets In Vitro Using Light Emitting Diodes,” HortScience, vol. 39, no. 2, pp. 375-379, 2004.
[8] D. J. Tennessen, R. J. Bula and T. D. Sharkey, “Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation,” Photosynthesis Research, vol.44, pp. 261-269, 1995.
[9] B. A. Diner, “The reaction center of photosystem II,” in Staehelin L.A. and Arntzen C.J. (eds) Encylopaedia of Plant Physiology, vol. 19, pp. 422-436, 1986.
[10] J. Whitemarsh and W. A. Cramer, “Cytochrome f function in photosynthetic electron transport," J. Biophys., vol. 26, pp. 223-234, 1979.
[11] M. U. F. Kirschbaum and R. W. Pearcy, “Gas exchange analysis of the fast phase of photosynthetic induction in Alocasia macrorrhiza," Plant Physiol., vol. 87, pp. 818-821, 1988.
[12] R. Emerson and W. Arnold, “A Separation of the Reactions in Photosynthesis by Means of Intermittent light,” J. Gen. Physiol., vol. 15, pp.391-420, 1932.
[13] http://www.szgtled.com/en/main.asp
[14] 李世鴻,“半導體工程原理”,p.360,全威圖書有限公司.
[15] http://www-opto.e-technik.uni-ulm.de/lehre/cs/
[16] S.O.Kasap “Optoelectronics and Photonics Principles and Practices” Pearson press.
[17] http://www.nfc.nctu.edu.tw/mechine_new/mechine/PECVD.htm
[18] http://www.icmm.csic.es/fis/english/evaporacion_resistencia.html
[19] Kar S and Dahlke W E 1972 Solid-State Electron. 15 221