研究生: |
簡敦仁 Dun Ren Chien |
---|---|
論文名稱: |
低傳輸成本樹建構的研究 On the Study of Constructing Low Routing Cost Tree |
指導教授: |
唐傳義
Chuan Yi Tang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 25 |
中文關鍵詞: | 傳輸成本 、傳輸成本樹 |
外文關鍵詞: | routing cost, routing cost tree |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在一個無向圖中,兩節點之間的傳輸成本為其最短路徑之長度,而對此圖之擴張樹而言,其傳輸成本為兩兩節點在此樹上之傳輸成本之總和。尋找一個低傳輸成本之擴張樹,確實是網路設計上重要的問題。
兩節點之通訊成本定義為其傳輸成本乘上其傳輸需求量,而一擴張樹的通訊成本為兩兩節點在此樹上之通訊成本之和。給定各個節點的權重,其中一個問題係假設兩個節點之傳輸需求量為此兩節點權重之乘積,其目標在尋找最低通訊成本的擴張樹,另一個問題則假設兩點的傳輸需求量為此兩節點之權重之和。
另一個被研究的問題是如何有效利用另外給定的一些額外金錢,改善原本的網路架構,使得改善後的網路架構可以得到較低的傳輸成本。當然其結果可以應用在相關的網路設計問題上。
Given an undirected graph with nonnegative costs on the edges, the routing cost of a pair of vertices is the cost of the shortest path between them, and the routing cost of any of its spanning trees is the sum over all pairs of vertices of the routing cost in the tree. The communication cost of a pair of vertices is its routing cost multiplied by a given requirement, and the communication cost of a spanning tree is the sum over all pairs of vertices of the communication cost in the tree. Finding a spanning tree of minimum routing cost in edge-weighted undirected general graph is known to be NP-hard, and some approximation algorithms are presented. Another problem is how to improve routing cost on any network structures using extra cost. This problem will be discussed in this thesis.
[1]. I. Althofer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On sparse spanners of weighted graph, Discrete and computational Geometry, 9(1):81-100, 1993.
[2]. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, the MIT Press, 1994.
[3]. T. C. Hu, Optimum communication spanning tree, SIAM J. Comput., 3(1974), pp. 188-195.
[4]. S. Khuller, B. Raghavachari, and N. Young, Balancing minimum spanning trees and shortest-path trees, Algorithmica, 14(1995), pp. 305-321.
[5]. B. Y. Wu, K. M. Chao and C. Y. Tang, Algorithms for Finding the Shortest Total Path Length 2-star on a Metric Space, in the Proceedings of National Computer Symposium 1997 Republic of China, pp. E-73, 1997.
[6]. B. Y. Wu, G. Lancia, V. Bafna, K. M. Chao, R. Ravi, and C. Y. Tang, A polynomial time approximation scheme for minimum routing cost spanning trees, in the Proceedings of Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’98), pp. 21-32, 1998.
[7]. B. Y. Wu, G. Lancia, V. Bafna, K. M. Chao, R. Ravi, and C. Y. Tang, A polynomial time approximation scheme for minimum routing cost spanning trees, to appear in SIAM J. on Computing, accepted.
[8]. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, San Francisco, 1979.
[9]. E. Horowitz, S. Sahni and D. Mehta, Fundamentals of Data Structures in C++, W. H. Freeman and Company, San Francisco, 1995.
[10]. E. Horowitz, S. Sahni and D. Mehta, Computer Algorithms C++, W. H. Freeman and Company, San Francisco, 1997.
[11]. Douglas B. West, Introduction to Graph Theory, Prentice-Hall, Inc.,1996.
[12]. D. B. Shmoys, Computing near-optimal solutions to combinatorial optimization problems, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 20(1995), pp. 355-397, American Mathematical Society.
[13]. D. S. Johnson, J. K. Lenstra and A. H. G. Rinnooy Kan, The complexity of the network design problem, Networks, 8(1978), pp. 279-285.
[14]. R. Wong, Worst-case analysis of network design problem heuristics, SIAM J. Algebraic Discr., 1(1980), pp. 51-63.
[15]. 國立清華大學資訊工程系吳邦一博士論文