簡易檢索 / 詳目顯示

研究生: 陳銘章
Chen, Ming-Chang.
論文名稱: 建立遠端監控之雷射干涉微影系統與製程優化
Establishment of Laser Interference Lithography Remote Monitoring System and Process Optimization
指導教授: 傅建中
Fu, Chien-Chung
口試委員: 李三良
Lee, San-Liang
鄭正元
Jeng, Jeng-Ywan
宋震國
Sung, Cheng-Kuo
項維巍
Hsiang, Wei-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 87
中文關鍵詞: 雷射干涉微影物聯網遠端監控光柵結構
外文關鍵詞: Laser interference lithography, Internet of things, Remote monitoring, Grating structure
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,為了提升製造業競爭力,各先進國家積極的朝智慧化製造、生產以及即時反應方向努力,並提出了許多相關政策。在物聯網、大數據、AI興起的時代,蒐集資料、資料分析到回饋自動控制機台,成為工程師優化機台系統的方向,尤其在需要大量人力判斷、調整之設備,更顯得自動化、智慧化製造格外重要。
    在多項微影製程技術中,雷射干涉微影(Laser Interference Lithography)相較於其他微影技術,在製作微小週期結構上,有著以低成本、大面積、高解析度之優勢。利用干涉原理,無須光罩,且結構之週期與線寬只須根據干涉光入射角度以及曝光時間進行調整,便可達到奈米結構之需求。
    依據學術界相關的研究文獻,以及本研究團隊長期對雷射干涉微影技術之研究,已歸納出許多影響曝光結果之因素與相對應之系統設計,在系統開發上有Lloyd’s Mirror曝光系統、多光束雷射干涉微影系統,以及曝光劑量模擬程式;而系統優化上有振動缺陷檢測、溫溼度感測、光形監控,以及自動遮光器等。
    然而在物聯網系統開發方面,本實驗系統雖有即時監控介面,但仍尚未有完整過程之數據、資料庫,且目前的機台在實驗過程中尚須有人員在一旁操作才能進行曝光與顯影製程,使得製作的試片數量有限。為了提升本實驗室雷射干涉微影系統之產能,以讓雷射干涉微影機台能遠端監控為目標,並能儲存製程參數供後續分析以優化製程,因此本研究調整光路與曝光平台,同時運用無線傳輸結合物聯網系統整合多個感測器,將各項影響曝光結果之因素數據化,上傳數據至雲端資料庫進行儲存紀錄,讓使用者在實驗室外透過手機應用程式也能夠簡單操作、清楚看到曝光過程與擷取之數據,達到遠端即時監控之目的;另外也建立光柵結構之製程參數表,將其套用至搭載了物聯網之雷射干涉微影系統中,以利後續結構規格的分析與預測,為自動化設備奠定基礎。


    In recent years, in order to enhance the competitiveness of the manufacturing industry, advanced countries have actively worked towards smart manufacturing, smart production, and immediate response, and also have proposed many relevant policies. In the era of the rise of the Internet of Things, big data, and AI, collecting data, analyzing data, and giving feedback to automatic control machines have become the direction for engineers to optimize the machine system. It shows that automated and intelligent manufacturing is more extremely important, especially for equipment that requires a lot of human judgment and adjustment.
    Among many lithography process technologies, laser interference lithography has the advantages of low cost, large area and high resolution in the production of micro periodic structures compared to other lithography technologies. Using the principle of interference, process doesn’t require mask. Also, the period and line width of the structure only need to be adjusted according to the exposure time and the angle of the interference light to meet the needs of nanostructures.
    Based on the relevant research literature in the academic community and the long-term research of laser interference lithography by our research team, many factors that affect the exposure results and the corresponding system design have been summarized. In the system development, there are Lloyd's Mirror exposure system, multibeam laser interference lithography system and exposure dose simulation program; also, system optimization includes vibration defect detection, temperature and humidity sensing, light shape monitoring, and automatic shutter.
    However, in terms of the development of the Internet of Things system, although this experimental system has a real-time monitoring interface, there is still no complete process data and database. And the current machine that still needs to be operated by personnel during the experiment to perform the exposure and the development process makes the production of test pieces limited. In order to increase the production capacity of the laser interference lithography system in our laboratory, this study set the goal to make the laser interference lithography machine can be remotely monitored, and the process parameters can be stored for subsequent analysis to optimize the process. Therefore, this study adjusted the optical path and exposure platform, and used wireless transmission combined with the Internet of Things system to integrate multiple sensors. And we used the erected system to digitize various factors that affect the exposure results, and uploaded the data to the cloud database for storage to achieve the purpose of remote real-time monitoring that allow users to experiment remotely, easily operate through the mobile phone application, and clearly see the exposure process and the captured data. In addition, the process parameter table of the grating structure was also established and applied to the laser interference lithography system equipped with the Internet of Things to facilitate the analysis and prediction of structural specifications and lay the foundation for subsequent automation equipment.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 雷射干涉微影介紹 2 1.2.2 雷射干涉微影系統發展 7 1.2.3 物聯網概述 10 1.2.4 資料擷取與傳輸 12 1.3 研究動機 17 1.4 論文架構 18 第二章 研究方法 19 2.1 Lloyd’s Mirror 雷射干涉微影系統架構 19 2.1.1 雷射光源 19 2.1.2 雷射光路 20 2.1.3 曝光系統 21 2.2 光柵結構規格參數探討 22 2.2.1 結構高度 22 2.2.2 結構週期 22 2.2.3 結構線寬 23 2.3 量測設備 25 2.4 物聯網系統 25 2.4.1 感測元件 25 2.4.2 資料擷取 28 2.4.3 無線傳輸 29 2.4.4 雲端資料庫 29 第三章 實驗規劃 30 3.1 雷射干涉微影系統調整 30 3.1.1 系統光路設計 30 3.1.2 曝光平台設計 30 3.2 物聯網系統架設 30 3.2.1 架設感測器 30 3.2.2 建立無線傳輸通道 31 3.2.3 建立雲端資料庫 31 3.3 系統整合 31 3.3.1 建立監控系統人機介面 31 3.3.2 各模組間之配合與調整 31 3.4 製程優化 33 3.4.1 收集影響製程之相關數據 33 3.4.2 資料分析改善製程 33 第四章 結果與討論 34 4.1 雷射干涉微影系統改良 34 4.1.1 系統光路設計結果 34 4.1.2 曝光平台設計結果 35 4.2 物聯網系統架設與遠端監控程式開發 38 4.2.1 感測元件架設 38 4.2.2 感測元件測試與數值調整 39 4.2.3 遠端監控App介面 43 4.2.4 系統整合程式開發 45 4.3 旋塗製程參數優化 52 4.3.1 抗反射層厚度改善 52 4.3.2 光阻厚度改善 54 4.3.3 旋塗製程參數最佳化 56 4.3.4 光阻厚度控制驗證 67 4.4 建立結構規格參數圖表 68 4.4.1 結構規格參數圖表設計 68 4.4.2 結構規格參數圖表 69 4.4.3 預測曝光結果與驗證 76 第五章 結論與建議 79 5.1 結論 79 5.2 建議 81 參考資料 82 附錄 85

    [1] Lin, Te-Hsun. (2018). The Development and Optimization of the Multi-Beam Laser Interference Lithography System. NTHU PME PhD Thesis.

    [2] Wolferen, Henk van, & Abelmann, Leon. (2011). Laser Interference Lithography. Lithography: Principles, Process and Materials, 133-148.

    [3] Kim, J. S., Lee, K. D., Ahn, S. W., Kim, S. H., Park, J. D., Lee, S. E., & Yoon, S. S. (2004). Fabrication of nanowire polarizer by using nanoimprint lithography. Journal of the Korean Physical Society, 45, S890-S892.

    [4] Miyake, M., Chen, Y. C., Braun, P. V., & Wiltzius, P. (2009). Fabrication of Three-Dimensional Photonic Crystals Using Multibeam Interference Lithography and Electrodeposition. Advanced Materials, 21(29), 3012-+. doi:10.1002/adma.200802085

    [5] Shir, D., Nelson, E. C., Chen, Y. C., Brzezinski, A., Liao, H., Braun, P. V., . . . Rogers, J. A. (2009). Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography. Applied Physics Letters, 94(1). doi:Artn 011101
    10.1063/1.3036955

    [6] Lin, Y. K., Harb, A., Lozano, K., Xu, D., & Chen, K. P. (2009). Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element. Optics Express, 17(19), 16625-16631. doi:10.1364/Oe.17.016625

    [7] Kim, J. B., Kim, S. M., Kim, Y. W., Kang, S. K., Jeon, S. R., Hwang, N., . . . Chung, C. S. (2010). Light Extraction Enhancement of GaN-Based Light-Emitting Diodes Using Volcano-Shaped Patterned Sapphire Substrates. Japanese Journal of Applied Physics, 49(4). doi:Artn 042102
    10.1143/Jjap.49.042102

    [8] Kim, S. M., Oh, H. S., Baek, J. H., Lee, K. H., Jung, G. Y., Song, J. H., . . . Song, J. H. (2010). Effects of Patterned Sapphire Substrates on Piezoelectric Field in Blue-Emitting InGaN Multiple Quantum Wells. Ieee Electron Device Letters, 31(8), 842-844. doi:10.1109/Led.2010.2051406

    [9] Xie, Q., Hong, M. H., Tan, H. L., Chen, G. X., Shi, L. P., & Chong, T. C. (2008). Fabrication of nanostructures with laser interference lithography. Journal of Alloys and Compounds, 449(1-2), 261-264. doi:10.1016/j.jallcom.2006.02.115

    [10] Bagal, A., & Chang, C. H. (2013). Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd's mirror interference lithography. Optics Letters, 38(14), 2531-2534. doi:10.1364/Ol.38.002531

    [11] Yang, Yin-Kuang. (2014). Design and development of real-time light shape monitor system of laser interference lithography. NTHU PME Master Thesis.

    [12] Farhoud, M., Hwang, M., Smith, H. I., Schattenburg, M. L., Bae, J. M., Youcef-Toumi, K., & Ross, C. A. (1998). Fabrication of large area nanostructured magnets by interferometric lithography. Ieee Transactions on Magnetics, 34(4), 1087-1089. doi:Doi 10.1109/20.706365

    [13] Xu, J., Wang, Z. B., Zhang, Z., Wang, D. P., & Weng, Z. K. (2014). Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography. Journal of Applied Physics, 115(20). doi:Artn 203101
    10.1063/1.4876298

    [14] Mai, Hsuan-Ying. (2017). Analysis and cancellation method of laser interference lithography vibration defects caused by environment vibration. NTHU PME Master Thesis.

    [15] Dzeng, Yu-Hua. (2018). Using IoT Technology to Design Intelligent Laser Interference Lithography System. NTHU PME Master Thesis.

    [16] Weiser, Mark. (1999). The Computer of the 21st Century. ACM Digital Library, 3(3), 3-11.

    [17] L.Atzori, A.Iera, & G.Morabito. (2010). The Internet of Things: A survey. Comput. Netw., 54, 2787-2805.

    [18] Liu, J., & Tong, W. (2010, 23-25 Sept. 2010). Dynamic Service Model Based on Context Resources in the Internet of Things. Paper presented at the 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).

    [19] Chang, K. (2014). Bluetooth: a viable solution for IoT? [Industry Perspectives]. IEEE Wireless Communications, 21(6), 6-7. doi:10.1109/MWC.2014.7000963

    [20] Yin, C., Chiu, C., & Hsieh, C. (2016). A 0.5 V, 14.28-kframes/s, 96.7-dB Smart Image Sensor With Array-Level Image Signal Processing for IoT Applications. IEEE Transactions on Electron Devices, 63(3), 1134-1140. doi:10.1109/TED.2016.2521168

    [21] Friedman, R., Kogan, A., & Krivolapov, Y. (2013). On Power and Throughput Tradeoffs of WiFi and Bluetooth in Smartphones. IEEE Transactions on Mobile Computing, 12(7), 1363-1376. doi:10.1109/TMC.2012.117

    [22] Muhendra, Rifki, Rinaldi, Aditya, Budimana, Maman, & Khairurrijal. (2017). Development of WiFi Mesh Infrastructure for Internet of Things Applications. Procedia Engineering, 170, 332-337.

    [23] Y.Zhuang, Z.Syed, J.Georgy, & N.El-Sheimy. (2015). Autonomous smartphone-based WiFi positioning system by using access points localization and crowdsourcing. Pervasive and Mobile Computing, 18, 118-136.

    [24] YongliRen, DilysSalim, Flora, MartinTomko, BrianBai, Yuntian, JeffreyChan, KaiQin, Kyle, & MarkSanderson. (2017). D-Log: A WiFi Log-based differential scheme for enhanced indoor localization with single RSSI source and infrequrnt sampling rate. Pervasive and Mobile Computing, 37, 94-114.

    [25] J.W.Yoo, & K.H.Park. (2011). A Cooperative Clustering Protocol for Energy Saving of Mobile Devices with WLAN and Bluetooth Interfaces. IEEE transactions on Moblie Computing, 31(4).

    [26] Kosek-Szott, Katarzyna, Gozdecki, Janusz, Loziak, Krzysztof, Atkaniec, Marek, Prasnal, Lukasz, Szott, Szymon, & Wagrowski, Michal. (2017). Coexistence Issues in Future WiFi Networks. IEEE Network, 31(4), 86-95.

    [27] Morsi, K., Gao, Q., & Xiong, H. G. (2011). Analysis and modelling of interference in bluetooth device discovery. IET Communications, 5(6), 890-900. doi:10.1049/iet-com.2010.0332

    [28] Yu, C., & Yu, Y. (2014). Reconfigurable Algorithm for Bluetooth Sensor Networks. IEEE Sensors Journal, 14(10), 3506-3507. doi:10.1109/JSEN.2014.2339351

    [29] AliMoridi, Mohammad, Kawamura, Youhei, MostafaSharifzadeh, KnoxChanda, Emmanuel, MarkusWanger, & Okawa, Hirokazu. (2018). Performance analysis of ZigBee network topologies for underground space. Monitoring and Communication System Tunnelling and Underground Space Technology, 71, 201-209.

    [30] Yi, Zefeng, Hou, Hui, Dong, Zhaoyang, He, Xiongkai, Lv, Zeyan, Wang, Chengzhi, & Tang, Aihong. (2015). ZigBee Technology Application in Wireless Communication Mesh Network of Ice Disaster. Procedia Computer Science, 52, 1206-1211. doi:https://doi.org/10.1016/j.procs.2015.05.159

    [31] Razouk, Wissam, Crosby, Garth V., & Sekkaki, Abderrahim. (2014). New Security Approach for ZigBee Weaknesses. Procedia Computer Science, 37, 376-381. doi:https://doi.org/10.1016/j.procs.2014.08.056

    QR CODE