研究生: |
林亦杰 Yi-Chieh Lin |
---|---|
論文名稱: |
溫度效應對奈米碳管/玻璃纖維積層板之機械性質與黏彈特性研究 Thermal Effects on Mechanical and Viscoelastic Properties of CNT/GFRP Laminates |
指導教授: |
葉銘泉
Ming-Chuen Yip |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 溫度效應 、奈米碳管 、積層板 、機械性質 、黏彈特性 |
外文關鍵詞: | thermal effect, CNT, laminates, mechanical properties, viscoelastic behaviors |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管擁有高潛力用來增加高分子複合材料機械和物理質性質。因此本研究製程利用超音波分散奈米碳管及手積層的方式製備奈米高分子預浸材。本研究旨在添加不同含量奈米碳管對玻璃纖維積層板複合材料之彎曲強度、層間剪切強度影響,結果指出添加0.75phr奈米碳管,積層板層間剪切強度、彎曲強度最佳,分別增加15.7%和9.2%。
透過不同環境溫度進行測試,最高達200°C,瞭解添加奈米碳管對玻璃纖維積層板溫度效應下機械性質影響。結果顯示在各不同環境溫度下積層板層間剪切強度、彎曲強度、彎曲模數和疲勞性質因添加奈米碳管而有所增加。利用動態機械分析(DMA)計算儲存模數,結果顯示溫度效應對靜態之彎曲強度、彎曲模數和積層板層間剪切強度測試數據與動態機械性質皆為溫度相依且趨勢幾乎相同,因溫度效應讓基材軟化加上纖維介面強度變弱是使強度與模數下降重要因素。以SEM觀察破壞面,藉此了解複合材料微觀破壞情況及其內部奈米碳管的分散排列情形。
因玻璃纖維積層板的基材為高分子材料,機械性質會因溫度和時間關係而大幅影響,此重要特性可視為黏彈材料。透過時間-溫度疊合原理(TTSP) 將DMA測試結果在選擇參考溫度下透過水平平移因子將不同溫度的模數相對頻率曲線組成儲存模數、損失模數相對頻率的主導曲線(Master curve)。時間-溫度疊合原理可將短期(Short term) 儲存模數、損失模數、tanδ和鬆弛模數測試用來預測長期(Long term)頻率、時間範圍測試。
Carbon nanotubes (CNTs) provide a high potential for the modification of glass-fiber reinforced polymer (GFRP) composite laminates. This paper reports CNTs/GFRP composite laminates were fabricated by using ultrasonication and the hand layup method. This study was aimed at investigating the interlaminar shear strength (ILSS) and flexural strength of composites consisting of adding several different proportions of CNTs. When CNTs content is 0.75 phr (per hundred resin), the mechanical properties are the best. The ILSS and flexural strength were significantly improved by 15.7% and 9.2%, respectively.
The effects of CNTs addition on the mechanical performances were evaluated with respect to retention of high-temperature properties up to 200 °C. It was found that ILSS, flexural strength , bending modulus and fatigue properties were significantly enhanced by CNTs at different evaluated temperatures. Fiber-matrix interfacial strength significant weakening and matrix softening was a major factor affecting the strength and modulus reduction observed at high temperature. The storage modulus, measured by dynamic mechanical analysis (DMA), showed temperature dependence nearly identical to the ILSS, flexural strength and bending modulus for GFRP and CNTs/GFRP composite laminates. The experimental results were examined to understand the fracture surface observed by scanning electron microscope (SEM).
In addition, because the matrix is polymer-based and its mechanical properties are influenced by both temperature and time, it is important to consider its viscoelastic behavior. This was accomplished by conducting the time-temperature superposition principle (TTSP) experiments using DMA. From the TTSP results, master curves were constructed for the storage (E’) and the loss moduli (E”) as a function of frequency at pre-selected reference temperature. The long-term storage modulus, loss modulus, tanδ and relaxation modulus of GFRP was predicted based on TTSP.
1. S. Iijima “Helical microtubules of graphitic carbon,” Nature, Vol.354, pp.56–58, (1991).
2. M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez and J. M. Benoit, “Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerization and charge transfer through siteselective interaction,” Chem. Comm, Vol.16, pp.1450–1451, (2001).
3. S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park and D. A. Schiraldi, “Fibers from polypropylene/nano carbon fiber composites,” Polymer, Vol.43, pp.1701–1703, (2002).
4. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters, Vol.76(20), pp.2868–2870, (2000).
5. A. Peigney, E. Flahaut, C. H. Laurent, F. Chastel and A. Rousset, “Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion,” Chemical Physics Letters, Vol.352, pp.20–25, (2002).
6. J. Wang, H. Kou, X. Liu, Y. Pan and J. Guo, “Reinforcement of mulite matrix with multi-walled carbon nanotubes,” Ceramics International, Vol.33, pp.719-722, (2007).
7. Y. Zheng, A. Zhang, Q.H. Chen, J. Zhang and R.C. Ning, “Functionalized effect on carbon nanotube/epoxy nano-composites,” Materials Science and Engineering A, Vol.435-6, pp.145-149, (2006).
8. H. Florian, H.G. Wichmann, B. Fiedler and K. Schulte, ” Infuence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study,” Composites Science and Technology, Vol.65, pp.2300-2313, (2005).
9. K. Lau, M. Lu and K. Kiao, “Improved mechanical properties of coiled carbon nanotubes reinforced epoxy nanocomposites, “ Composites: Part A, Vol.37, pp.1837-1840, (2006).
10. C.F. Schmid and D.J. Klingenberg, “Mechanical Flocculation in FlowingFiber Suspensions, “ Phys Rev Lett, Vol.84(2), pp.290–293, (2000).
11. Y. Song and J. Youn, “Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,” Carbon, Vol.43, pp.1378-1385, (2005).
12. P. Ptschke, T.D. Fornes and D.R. Paul, “Rheological behavior of multiwalled carbon nanotube/polycarbonate composites,” Polymer, Vol.43, pp.3247–3255, (2002).
13. S.G. Kim, W.S. Chu, W.K. Jung and S.H. Ahn, “Evaluation of mechanical and electrical properties of nanocomposite parts fabricated by nanocomposite deposition system (NCDS),” Journal of Materials Processing Technology, Vol.187-188, pp.331-334, (2007).
14. A. Cao, P.L. Dickrell, W. Sawyer, M.N. ghasemi-Nejhad and P.M. Ajayan, “Super-compressible foamlike carbon nanotube films,” Science, Vol.310, pp.1307, (2005).
15. F.H. Gojny, M.H.G. Wichmann, U. Kopke, B. Fiedler and K. Schulte, “Carbon nanotube-reinforced epoxy-comosites: enhanced stiffness and fracture toughness at low nanotube content, ” Composites Science and Technology, Vol.64, pp.2363-2371, (2004).
16. L. Kin-tak, S. San-Qiang and C. Hui-ming, “Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures,” Composites Science and Technology, Vol.63, pp.1161-1164, (2003).
17. J.E. Crespo, R. Balart, L. Sanchez and J.Lopez, “Mechanical behavior of vinyl plastisols with cellulosic fillers. Analysis of the interface between particals and matrices,” International Journal of Adhesion & Adhesives, Vol.27, pp.422-428, (2007).
18. S.M. Luz, A.R.Goncalves and A.P. Del’Arco Jr, “Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites,” Composites: Part A, Vol.38, pp. 1455-1461, (2007).
19. P.J. Herrera-Franco and A. Valadez-Gonzalez, “A study of the mechanical properties of short natural-fiber reinforced composites,” Composites: Part B, Vol.36 , pp.597-608, (2005).
20. X. Xu, M.M. Thwe, C. Shearwood and K. Liao, “Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films,” Appl Phys Lett, Vol.81, pp.2833–5, (2002).
21. J.N. Coleman, U. Khan and Y.K.Gun’ko, ”Mechanical reinforcement of polymers using carbon nanotubes,” Adv Mater, Vol.18, pp.689–706, (2006).
22. F.H. Gojny, M.H.G. Wichmann, B. Fiedler, W. Bauhofer and K. Shulte, “Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reiforced composites,” Compos Part A, Vol. 36(9), pp.1525–35, (2005).
23. J. Zhu, H. Peng, F. Rodriguez-Macias, J.L. Margrave, V.N. Khabashesku and A. Imam, “Reinforcing of epoxy polymer composites through integration of functionalized nanotubes,” Adv Funct Mater, Vol.14, pp.643–8, (2004).
24. H.G. Florian, H.G. Malte, F. Bodo, B. Wolfgang and S. Karl, ”Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites,” Composites: Part A, Vol,36, pp.1525-1535, (2005).
25. P. Vinod Veedu, C. Anyuan, L. Xuesong, M. Kougen, S. Caterina, K. Swastik, M. Pulickel and N. Mehrdad, “Multifunctional composites using reinforced laminae with carbin-nanotube forests,” nature materials, VOL5, (2006).
26. J. Zhu, A. Imam, R. Crane, K. Lozano, V. N.Khabashesku and E.V. Barrera, “Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength,” Composites Science and Technogoly (2006).
27. Y. Zhou, F. Pervin, L. Lewis and S. Jeelani, ”Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes,” Materials Science and Engnerring A (2007)
28. V.M. Donadon, G.B. Falzon and M.H. Lorenzo, ”Intralaminar toughness characterization of unbalanced hybrid plain weave laminates,” Composities: Part A, Vol.38, pp.1597-1611, (2007).
29. T. Yokozeki, Y. Iwahori and S. Ishiwata, “Matrix cracking behaviors in caron/epoxy laminates filled with cup-stacked carbon nanatubes (CSCNTs),” Composites: Patr A, Vol.38, pp.917-924, (2007).
30. M. Endo, K. YA, T. Hayashi, Y. Fukai, K. Oshida and M. Terrones, “Structural characterization of cup-stacked-type nanofibers with an entirely hollow core, ” APL, Vol.80, pp.1267-9, (2002).
31. K. Hsiao, J. Alms and S.G. Advani, “Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer omposites, ” Nanotechnology, Vol.14, pp.791-793, (2003).
32. M.H.G. Wichmann, J. Sumfleth, F.H. Gojny, M. Quaresimin, B. Fiedler and K. Schulte, “Glass-Fibre-Reinforced composites with enhanced mechanical and electrical properties – Benefits and limitations of a nanoparticle modified matrix,” Engineering Fracture Mechanics, Vol.73, pp.2346-2359, (2006).
33. M. Wong, M. Paramsothy, Xu XJ, Y. Ren, S. Li and K. Liao, “Physical interactions at carbon nanotube–polymer interface,” Polymer, Vol.44, pp.7757–64, (2003).
34. T. Saito, K. Matsushige and K. Tanaka, “Chemical treatment and modification of multi-walled carbon nanotubes,” Phys B, Vol.323(1–4), pp.280–3 , (2002).
35. F. Bodo, H.G. Florian, H.G. Malte, C.M. Nolte and K. Schulte, “Fundamental aspects of nano-reingorced composites,” Composites Science and Technology, Vol.66, pp.3115-3125, (2006).
36. Y. Siu-Ming, M. Chen-Chi, L. Yao-Yu and K. Hsu-Chiang, “Preparation, Morphology and properties of acid amine modified multiwalled carbon nanotube/polyimide composite,“ Composites Science and Technology, Vol.67, pp. 2564-2573, (2007).
37. J. F. Paiva, S. Mayer and M.C. Rezende, “Evaluation of mechanical properties of four different carbin/epoxy composites used in aeronautical field,” Materials Research, Vol.8, pp.1,91-97, (2005).
38. F. Deng, T. Ogasawara and N. Takeda, “Tensile properties at different temperature and observation of micro deformation of carbon nanotubes-poly(ether ether ketone ) composites,” Composites Science and Technology, (2007).
39. B.C. Ray, “Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites,” Journal of Colloid and Interface Science, Vol.298, pp.111-117, (2006).
40. M.C. Lafarie-Frenot and S. Rouquie, “Influence of oxidative environments on damage in x/epoxy laminates subjected to thermal cycling,” Composites Science and Technology, Vol.64, pp.1725-135, (2004).
41. D. E. Mouzakis, H. Zoga and C. Galiotis, “Accelerated environmental ageing study of polyester/glass fiber reinforced composites (GFRPCs),” Composites: Part B, (2007).
42. T. Sinmazcelik and A.A. Aric, “Thermal cycles effects on interlaminar shear strength (ILSS) and impact behavior of carbon/PEI composites,” J MATER SCI, Vol.44, pp.1233-1241, (2006).
43. E.J. Bosze, A. Alawar, O. Bertschger, Y. Tsai and S.R. Nutt, “High-temperature strength and storage modulus in unidirectional hybrid composites,” Composites Science and Technology, Vol.66, pp.1963-1969, (2006).
44. W.K. Goertzen and M.R. Kessler, “Dynamic mechanical analysis of carbon/epoxy composites for structural pipeline repair,” Composites: Part B, Vol.38, pp.1-9, (2007).
45. S.N. Yadav, V. Kumar and S. K. Verma, ”Fracture toughness behaviour of carbon fibre epoxy composite with Kevlar reinforced interleave,” Materials Science and Engineering B, Vol.132, pp.108-112, (2006).
46. C. R. Wetherhold and K.D. Pradipta, “Oxidation of copper fiber surface to improve fracture toughness of Cu/epoxy composite,” Materials Science and Engineering A, Vol.460-461, pp.344-50, (2007).
47. D. S. Saunders and G. Clark, “Fatigue Damage in Composite Laminates,” Materials Forum, Vol.17, pp.309-331, (1993).
48. R. D. Jamison, K. Schulte, K. L. Reifsnider and W. W. Stinchcomb, “Characterization and Analysis of Damage Mechanisms in Tension-Tension Fatigue of Graphite/Epoxy Laminates,” Effects of Defects in Composite Materials, ASTM STP 836, American Society for Testing and Materials, pp.21-55, (1984).
49. K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb and J. C. Duke, “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Recent Advance, Z. Hashin and C. T. Herakovich, eds., Pergamon Press, New York, pp.399-420, (1983).
50. T. Keller, T. Tirelli and A. Zhou, “Tensile fatigue performance of pultruded glass fiber reinforced poly profiles,” Composite Structures, Vol.68, pp.235-245, (2005).
51. A.N. Towo and M.P. Ansell “Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre-thermostting resin composites,” Composites Science and Technology, Vol.68, pp.925-932, (2008).
52. M.N. Bureau and J. Denault, “Fatigue resistance of continuous glass fiber/polypropylene composites: consolidation dependence,” Composites Science and Technology, Vol.64, pp.1785-1794, (2004).
53. L. Xiaoling, L. Hejun, X. Wenfeng and L. Kezhi, “Effects of tensile fatigue loads on flexural behavior of 3D braided C/C composites,” Composites Science and Technology, Vol.68, pp.333-336, (2008).
54. W. Hwang, and K. S. Han, “Fatigue of Composites Fatigue Modulus Concept and Life Prediction,” Journal of Composite Materials, Vol. 20, pp.154-165, (1986).
55. R. Yu, L. Feng, C. Hui-Ming and L. Kin, “Tension-tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced epoxy composite,” Carbon, Vol.41, pp.2159-2179, (2003).
56. B. Harris, H. Reiter, T. Adam, R.F. Dickson and G. Fernando, “Fatigue behavior of carbon fiber reinforced plastics,” Composites, Vol.21(1), pp.232-43, (1990).
57. B.k Marrs, R. Andrews and D. Pienkwski, “Multiwall carbon nanotubes enhance the fatigue performance of physiologically maintained methyl methacrylate-styrene copolymer,” Carbon, Vol.45 , pp.2098-2104, (2007).
58. M.L. Williams, R.F. Landel and J.D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” J. Am. Chem. Soc, Vol.77, pp.3701-07, (1955).
59. Y. He, “Thermomechanical and viscoelastic behavior of a no-flow underfill material for flip-chip applications,” Thermochimica Acta, Vol.439, pp. 127-134, (2005).
60. J. Yang, Z. Zhang, A. K. Schlarb and K. Friedrich, “On the characterization of tensile creep resistance of polymide 66 nanocomposites. Part I. Experimental result and general discussions, ” Polymer, Vol.47, pp.2791-2801, (2006).
61. J. Yang, Z. Zhang, A. K. Schlarb and K. Friedrich, “On the characterization of tensile creep resistance of polymide 66 nanocomposites. Part II. Modeling and prediction of long-term performance, ” Polymer, Vol.47, pp.6745-6758, (2006).
62. Y. Miyano, M. Nakada and N. Sekine, “Accelerated testing for long-term duability of GFRP laminates for marine use,” Composites Part: B, Vol.35, pp.497-502, (2004).
63. Y. Miyano, M. Nakada and N. Sekine, “Prediction of long-term fatigue life of quasi-isotropic CFRP laminates for aircraft use,” International Journal of Fatigue, Vol.28, pp.1217-1225, (2006).
64. Y. Miyano, M. Nakada, J. Ichimura and E. Hayakawa, “Accelerated testing for long-term strength of innovative CFRP laminates for marine use,” Composites Part: B, Vol.39, pp.5-12, (2008).
65. ASTM D790-95a, “Flexural Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials1,” Annual Book of ASTM Standards, Vol.08.01, pp.155-163, (1996).
66. ASTM D2344-84, “Standard Test Method for Apparent Interlaminar Shear Strength of Parallel Fiber Composites by Short-Beam Method1,” Annual Book of ASTM Standards, Vol.15.03, pp.43-45, (1988).
67. ASTM D2990-01, “Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics1,” (2008).
68. ASTM D4065-06, “Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures1,”, (2008).
69. ASTM D5023-07, “Standard Test Method for Plastics: Dynamic Mechanical Properties: In Flexure (Three-Point Bending)1,”, (2008).
70. ASTM E328-02, “Standard Test Methods for Stress Relaxation for Materials and Structures1,”, (2008).
71. J. D. Ferry, “Viscoelastic properties of polymers, ” Wiley, (1980).
72. M. Oscar, J.A. Paulo, A.C. Rosemary and B.Q. Ana, “Thermomechanical properties of biodegradable films based on blends of gelatin and poly(vinyl alcohol), ” Food Hydrocolloids, (2007).
73. C.A. Angell, “Formation of glasses from liquids and biopolymers, “, Science, Vol.267, pp.1924–1935, (1995).
74. ASTM D831-06, “Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis1,”(2008).
75. JEDEC, JEDEC22-A113-A, “Preconditioning of Plastic Surface Mount Devices Prior to Reliability Testing,” JEDEC Standard, Electronic Industries Association, Arlington, VA, pp.1-5, June, (1995)
76. ASTM D257, “Test Methods for dc resistance or conductance of insulating materials,” (1999).
77. ASTM D792, “Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement,” (1998).
78. S.J.V. Frankland, A. Caglar, D.W. Brenner and M. Griebel, “Molecular simulation of the influence of chemical cross-links on the shear-strength of carbon nanotubes-polymer interfaces,” J Phys Chem B, Vol.106, pp. 3046-3048, (2002).
79. 麥富德、黃楓台、簡國明、王永銘和陳秋燕,奈米碳管專利地圖及分析,行政院國家科學委員會科學技術資料中心,台灣台北,民國九十一年。