研究生: |
劉明達 |
---|---|
論文名稱: |
Control Variate於非高斯移動平均模式最佳預測數值演算法之應用探討 |
指導教授: | 徐南蓉 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 28 |
中文關鍵詞: | control variate 、prediction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文的主要目的是探討在時間序列中MA(q)模式下,計算最佳預測的演算法。除了在高斯過程之外,MA(q)模式下的最佳預測都是非線性,一般情況下無解析解,只能透過數值方法得出數值解。但最佳線性預測可藉由高斯過程的特性精確的求出解析解。Breidt and Hsu (2005)採用Monte Carlo 法有效地求最佳預測的數值解,因此本論文擬加入control variate來改進Breidt and Hsu的方法,希望能在同樣的計算量下得到更準的數值解。
The main purpose in the paper is to discuss algorithm of computing the best prediction in MA(q) time series model. Except in Gaussian process, the best prediction in MA(q) model is nonlinear, generally there is no exact solution, it could compute numeric solution by numeric method. But the exact solution of best linear prediction could be evaluate via characteristic of Gaussian process. Breidt and Hsu(2005) evaluate numeric solution effectively by Monte Carlo method. This paper will use control variate to improve the Breidt and Hsu's method, we hope that we could get better numeric solution in same computation quantity.
參考文獻
Evan, M. and Swartz, T. (2000). Approximating Integrals via Monte Carlo and Deterministic Methods, Oxford University Press, New York.
Breidt, F.J. and Hsu, N.J. (2005). Best Mean Square Prediction for Moving Averages, Statistica Sinica, 15, 427-446.
Brockwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods, 2nd ed.
Springer-Verlag, New York.
Shepp, L.A., Slepian, D. and Wyner, A.D. (1980). On Prediction of Moving-average Process. The Bell System Technical Journal, 59, 367-415.
Powell, M.J.D. and Sawnn, J. (1966). Weighted Uniform Sampling-A Monte Carlo Technique for Reducing Variance. Journal Institute Mathematics and Applications, 2, 228-236.
Spanier, J. (1979). A New Family of Estimators for Random Walk Problem. Journal Institute Mathematics and Applications , 23, 1-31.
Evans, M. and Swartz, T. (1988a). Monte Carlo Computation of Some Multivariate Normal Probabilities. Jounnal of Statistical Computation & Simulation, 30, 117-128.
Evans, M. and Swartz, T. (1995b). Bayesian Integration Using Multivariate Student Importance Sampling. Computing Science and Statistics, 27, 456-461.
Hesterberg, T. (1995). Weighted Average Importance Sampling and Defensive Mixture Distributions. Technometrics, 37, 185-194.
林義雄 (2004).高斯移動平均模式之可逆性判斷與預測比較,清華大學統計研究所碩士論文.