簡易檢索 / 詳目顯示

研究生: 鍾曜吉
Yao-Chi Chung
論文名稱: 腸病毒71型類病毒顆粒的表現、特性分析及其應用為抗腸病毒疫苗之評估
The Expression and Characterization of Enterovirus 71 Virus-Like Particles and following Evaluation as a Potential Vaccine
指導教授: 胡育誠
Yu-Chen Hu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 107
中文關鍵詞: 腸病毒71型類病毒顆粒桿狀病毒疫苗免疫反應
外文關鍵詞: enterovirus 71, virus-like particle, vaccine, baculovirus, immunization, immune responses
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸病毒71型(enterovirus 71)是目前已知69種血清型腸病毒中的一種,過去十幾年來一直威脅著害國內幼童健康,造成至少兩百人死亡及每年仍有數起嚴重案例的悲劇。研究腸病毒類病毒顆粒(virus-like particle, VLP)可以提供對病毒;結構及其蛋白質相關知識,以輔助目前仍停滯不前的預防、治療工作,並可當作具有潛力之疫苗。腸病毒71型外殼之組合類似小兒麻痺病毒組合的模式,以3CD水解蛋白酶將P1結構蛋白之前趨物切割成單一的結構蛋白再組合而成。我們在先前的研究中利用兩株重組桿狀病毒分別表現3CD水解蛋白酶與P1結構蛋白,確認3CD水解蛋白酶能夠切割P1結構蛋白成為個別的結構蛋白(VP1, VP3與VP0),並且能夠在細胞內形成腸病毒71型類病毒顆粒。在本研究中,我們進一步把3CD水解蛋白酶與P1結構蛋白的基因放入同一個重組桿狀病毒(vBac-P1-3CD)中,利用單一感染的方式同時表現這兩種蛋白質來生產類病毒顆粒。從電子顯微鏡觀測經超微薄切片的感染細胞中發現,細胞內有類病毒顆粒堆積形成,且聚集方式與真實腸病毒71型顆粒相似。在結合蔗糖不連續密度梯度與氯化銫等密度梯度離心的超高速離心純化後,我們得到高純度(>90%)的類病毒顆粒,純化後的類病毒顆粒以電子顯微鏡觀察,確認顆粒大小、形狀與中空結構的特性均與預測的相似,並經由SDS-PAGE與Western-blot的分析確認類病毒顆粒的組成。接著我們利用免疫金染色確認VP1結構蛋白的確實存在於顆粒的表面,而利用市售的腸病毒71型檢測試劑的檢驗也再度證實純化後的顆粒就是腸病毒71型類病毒顆粒。
    在確認腸病毒71型類病毒顆粒的表現與純化後,我們進一步利用小鼠免疫測試以評估類病毒顆粒做為疫苗的可行性。實驗中以類病毒顆粒、變性類病毒顆粒、熱處理去活化腸病毒為抗原進行小鼠免疫,比較不同抗原在體液性與細胞性免疫反應的差異。對BALB/c小鼠進行免疫後,類病毒顆粒組別的小鼠血清能夠測到高濃度的的IgG抗體與中和抗體,顯示類病毒顆粒能夠誘發強而且持久的體液性免疫反應。另外,在以類病毒顆粒為抗原的小鼠組別中,由免疫後小鼠取出的splenocytes細胞經過抗原刺激後有著明顯的T細胞增生現象,並且能夠分泌高濃度的細胞激素IFN-γ、IL-2與IL-4,這些結果顯示類病毒顆粒能夠誘發Th1與Th2免疫反應。更重要的是,母鼠經過類病毒顆粒免疫後,所生出的小鼠對於致命劑量(1000 LD50)的腸病毒感染具有明顯增強的抵抗力(存活率提升至89%)。相較之下,變性類病毒顆粒與熱處理去活化腸病毒雖然能夠誘發高濃度的IgG抗體與細胞性免疫反應,但是只能誘發較低濃度的中和抗體,在小鼠challenge實驗中也只能提供較低效率的保護。這些結果顯示保存類病毒顆粒的完整結構的重要性,也更進一步證實類病毒顆粒做為抗腸病毒71型疫苗的可行性。


    Enterovirus 71 (EV71) is one of the 69 enterovirus serotypes within the picornavirus family and has identified as the major etiological agent responsible for the outbreaks of severe neurological diseases in the past decades. The study of virus-like particles (VLPs) could provide further insight into the virus structure and virus assembly pathway that are crucial for antiviral drug design and could serve as a potential vaccine. We have previously cloned the genes encoding P1 polyprotein and 3CD protease into two separate baculoviruses (Bac-P1 and Bac-3CD) and demonstrated that the co-expression of P1 and 3CD in insect cells resulted in the cleavage of P1 by 3CD into individual structural proteins (VP1, VP3 and VP0) and subsequently formation of EV71 VLP. In this study, we further cloned the two genes into one baculovirus (vBac-P1-3CD) and expressed P1 and 3CD proteins by single-infection. The formation and aggregation of VLP within the infected insect cells were visualized by ultrathin-sectioning and transmission electron microscopy (TEM). These particles measured 25-27 nm in diameter and appeared icosahedral, thus resembling the authentic enterovirus in size and appearance. The VLPs were further purified by sucrose and CsCl gradient ultracentrifugation, and the purity of the sample was greater than 90%. The purified VLPs comprised VP0, VP3 and VP1 of roughly equal molar ratios, and implied the similarity between the VLP and the authentic virus in composition. Nonetheless, after purification the size and morphology of VLPs appeared indistinguishable from those of poliovirus VLP. More importantly, the immunogold labeling confirmed the presence of VP1 epitopes on the VLP surface.
    After characterizing the properties of VLP, we further evaluated the potential of VLP as a vaccine by comparing the humoral and cellular immune responses elicited by the purified VLP, denatured VLP and heat-inactivated EV71 virus. After immunization of BALB/c mice, EV71 VLP induced potent and long-lasting humoral immune responses as evidenced by the high total IgG titer and neutralization titer. The splenocytes collected from the VLP-immunized mice exhibited significant cell proliferation and produced high levels of IFN-γ, IL-2 and IL-4 after stimulation, indicating the induction of Th1 and Th2 immune responses by VLP immunization. More importantly, the VLP immunization of mother mice conferred protection (survival rate up to 89%) to neonatal mice against the lethal (1000 LD50) viral challenge. Compared with the VLP immunization, immunization with denatured VLP and heat-inactivated EV71 elicited lower neutralization titers and conferred less effective protection to newborn mice, although they induced comparable levels of total IgG and cellular immune responses. These data collectively indicate the importance of the preservation of VLP structure and implicate the potential of VLP as a vaccine to prevent EV71 infection.

    摘要 Abstract 目錄 第一章 序論 第二章 文獻回顧 2-1 腸病毒71型的特徵 2-2 腸病毒71型的診斷與研究 2-3 類病毒顆粒之應用 2-4 桿狀病毒表現系統 2-5目前成果 2-6驗動機及目的 第三章 材料與方法 3-1 細胞與病毒的培養 3-2 類病毒顆粒與病毒的純化 3-3 類病毒顆粒的特性分析 3-4 小鼠免疫實驗及分析 第四章 結果與討論(1) 腸病毒71型類病毒顆粒的表現與特性分析 4-1 腸病毒71型類病毒顆粒的表現 4-2 腸病毒71型類病毒顆粒的純化與特性分析 4-3 討論 第五章 結果與討論(2) 腸病毒71型類病毒顆粒的免疫性分析 5-1 小鼠的培養與免疫接種 5-2 體液性免疫分析 5-3 細胞性免疫分析 5-4免疫血清對小鼠對抗致命病毒量的影響 5-5 討論 第六章 結論及未來展望 6-1 結論 6-2 未來展望 參考文獻

    [1]Morens DM, Pallansch MA. Epidemiology. In: Rotbart, H.A. (ed.), Human Enterovirus Infections. Washington, D. C.: ASM Press, 1995.
    [2]Flint SJ, Enquist LW, Racaniello VW, Skalka AM. Principles of Virology: Molecular Biology, Pathogenesis, and Control. Washington, D.C.: ASM press, 2000.
    [3]Zuckerman AJ, NetLibrary Inc. Principles and practice of clinical virology. 5th ed. Chichester ; Hoboken, NJ: Wiley, 2004.
    [4]Ghosh S, Parvez MK, Banerjee K, Sarin SK, Hasnain SE. Baculovirus as mammalian cell expression vector for gene therapy: an emerging strategy. Mol Ther 2002; 6 (1): 5-11.
    [5]Philip D. M. PM-CaPM. Enteroviruses. In: Arie J. Zuckerman JEBaJRP, editor. Principles and Practice of Clinical Virology: John Wiley & Sons Ltd, 2000: 427-48.
    [6]Koch F, Koch G. The molecular biology of poliovirus. Vienna: Springer-Verlag, 1985.
    [7]Brown BA, Pallansch MA. Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus. Virus Res 1995; 39 (2-3): 195-205.
    [8]McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev 2002; 26 (1): 91-107.
    [9]Toyoda H, Nicklin MJH, Murray MG, Anderson CW, Dunn JJ, Studier FW, et al. A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 1986; 45: 761-70.
    [10]Wong-Ypma MF, Dewalt PG, Johnson VH, Lamb JG, Semler BL. Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 1988; 166: 265-70.
    [11]Hanecak R, Semler BL, Ariga H, Andersson CW, Wimmer E. Expression of a cloned gene segment of poliovirus in E. coli: evidence for autocatalytic production of the viral proteinase. Cell 1984; 37: 1063-73.
    [12]Putnak JR, Phillips BA. Picornaviral structure and assembly. Microbiol Rev 1981; 45: 287-315.
    [13]Arbustini E, Grasso M, Porcu E, Bellini O, Diegoli M, Fasani R, et al. Enteroviral RNA and virus-like particles in the skeletal muscle of patients with idiopathic dilated cardiomyopathy. Am J Cardiol 1997; 80 (9): 1188-93.
    [14]Hogle JM, Chow M, Filman DJ. Three-dimensional structure of poliovirus at 2.9 A resolution. Science 1985; 229 (4720): 1358-65.
    [15]Ansardi DC, Palghosh R, Porter D, Morrow CD. Encapsidation and serial passage of a poliovirus replicon which expresses an inactive 2A proteinase. J Virol 1995; 69 (2): 1359-66.
    [16]Basavappa R, Syed R, Flore O, Icenogle JP, Filman DJ, Hogle JM. Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci 1994; 3 (10): 1651-69.
    [17]Schmidt NJ, Lennette EH, Ho HH. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 1974; 129 (3): 304-9.
    [18]Chumakov M, Voroshilova M, Shindarov L, Lavrova I, Gracheva L, Koroleva G, et al. Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol 1979; 60: 329-40.
    [19]Blomberg J, Lycke E, Ahlfors K, Johnson T, Wolontis S, von Ziepel G. New enterovirus type associated with epidemic of aseptic meningitis and/or hand, foot, and mouth disease. Lancet 1974; 2: 112.
    [20]Gilbert GL, Dickson EE, Waters MJ, Kennet ML, Land SA, Sneddon M. Outbreak of enterovirus 71 infection in Victoria, Australia, with a high incidence of neurologic involvement. Ped Infect Dis 1988; 8: 611-6.
    [21]Nagy G, Takatsy S, Kukan E, Mihaly I, Domok I. Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS disease in Hungary in 1978. Arch Virol 1982; 71: 217-27.
    [22]Samuda GM, Chang WK, Yeung CY, Tang PS. Monoplegia caused by enterovirus 71: an outbreak in Hong Kong. Ped Infect Dis 1987; 6: 206-8.
    [23]Andreadis ST, Roth CM, Le Doux JM, Morgan JR, Yarmush ML. Large-scale processing of recombinant retroviruses for gene therapy. Biotechnol Prog 1999; 15 (1): 1-11.
    [24]Fujimoto T, Chikahira M, Yoshida S, Ebira H, Hasegawa A, Totsuka A, et al. Outbreak of central nervous system disease associated with hand, foot, and mouth disease in Japan during the summer of 2000: Detection and molecular epidemiology of enterovirus 71. Microbiol Immunol 2002; 46 (9):621-7.
    [25]Singh S, Chow VT, Phoon MC, Chan KP, Poh CL. Direct detection of enterovirus 71 (EV71) in clinical specimens from a hand, foot, and mouth disease outbreak in Singapore by reverse transcription-PCR with universal enterovirus and EV71-specific primers. J Clin Microbiol 2002; 40 (8): 2823-7.
    [26]Bastis D, Simonet S, Patterson MA, Neill S. Identification of enteroviruses by indirect immunofluorescence using monoclonal antibodies. Clin Diagn Virol 1995; 3 (1): 83-93.
    [27]Trabelsi A, Grattard F, Nejmeddine M, Aouni M, Bourlet T, Pozzetto B. Evaluation of an enterovirus group-specific anti-VP1 monoclonal antibody, 5-D8/1, in comparison with neutralization and PCR for rapid identification of enteroviruses in cell culture. J Clin Microbiol 1995; 33 (9): 2454-7.
    [28] Melnick JL, Rennick V, Hampil B, Schmidt NJ, Ho HH. Lyophilized combination pools of enterovirus equine antisera: preparation and test procedures for the identification of field strains of 42 enteroviruses. Bull World Health Organ 1973; 48 (3): 263-8.
    [29] Grandien MMF, and A. Ehrnst. Diagnostic procedures for viral, rickettsial and chlamydial infections. In: E. H. Lennette DAL, and E. T. Lennette, editor. Enterovirus. Washington, D.C: American Public Health Association, 1995: 279-97.
    [30] Tsao KC, Chang PY, Ning HC, Sun CF, Lin TY, Chang LY, et al. Use of molecular assay in diagnosis of hand, foot and mouth disease caused by enterovirus 71 or coxsackievirus A 16. J Virol Methods 2002; 102 (1-2): 9-14.
    [31] Rombaut B, Vrijsen R, Boeye A. New evidence for the precursor role of 14S subunits in poliovirus morphogenesis. Virology 1990; 117: 411-4.
    [32] Rombaut B, Andries K, Boeye A. A comparison of WIN 51711 and R 78206 as stabilizers of poliovirus virions and procapsids. J Gen Virol 1991; 72 (9): 2153-7.
    [33] Pevear DC, Tull TM, Seipel ME, Groarke JM. Activity of pleconaril against enteroviruses. Antimicrob Agents Chemother 1999; 43 (9): 2109-15.
    [34] Weng TY, Chen LC, Shyu HW, Chen SH, Wang JR, Yu CK, et al. Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antiviral Res 2005; 67 (1): 31-7.
    [35] Lu WW, Hsu YY, Yang JY, Kung SH. Selective inhibition of enterovirus 71 replication by short hairpin RNAs. Biochem Biophys Res Commun 2004; 325 (2): 494-9.
    [36] Sim AC, Luhur A, Tan TM, Chow VT, Poh CL. RNA interference against enterovirus 71 infection. Virology 2005; 341 (1): 72-9.
    [37] Tan EL, Tan TM, Tak Kwong Chow V, Poh CL. Inhibition of enterovirus 71 in virus-infected mice by RNA interference. Mol Ther 2007; 15 (11): 1931-8.
    [38] Liu CC, Lian WC, Butler M, Wu SC. High immunogenic enterovirus 71 strain and its production using serum-free microcarrier Vero cell culture. Vaccine 2007; 25 (1): 19-24.
    [39] Lin YC, Wu CN, Shih SR, Ho MS. Characterization of a Vero cell-adapted virulent strain of enterovirus 71 suitable for use as a vaccine candidate. Vaccine 2002; 20 (19-20): 2485-93.
    [40] Wu CN, Lin YC, Fann C, Liao NS, Shih SR, Ho MS. Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine 2001; 20 (5-6): 895-904.
    [41] Chiu CH, Chu C, He CC, Lin TY. Protection of neonatal mice from lethal enterovirus 71 infection by maternal immunization with attenuated Salmonella enterica serovar Typhimurium expressing VP1 of enterovirus 71. Microbes Infect 2006; 8 (7): 1671-8.
    [42] Chen HF, Chang MH, Chiang BL, Jeng ST. Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from enterovirus 71. Vaccine 2006; 24 (15): 2944-51.
    [43] Foo DG, Alonso S, Phoon MC, Ramachandran NP, Chow VT, Poh CL. Identification of neutralizing linear epitopes from the VP1 capsid protein of Enterovirus 71 using synthetic peptides. Virus Res 2007; 125 (1): 61-8.
    [44] Roy P. Genetically engineered particulate virus-like structures and their use as vaccine delivery systems. Intervirology 1996; 39 (1-2): 62-71.
    [45] Casal JI. Use of parvovirus-like particles for vaccination and induction of multiple immune responses. Biotechnol Appl Biochem 1999; 29: 141-50.
    [46] Lenz P, Day PM, Pang YYS, Frye SA, Jensen PN, Lowy DR, et al. Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol 2001; 166 (9): 5346-55.
    [47] Gilbert SC. Virus-like particles as vaccine adjuvants. Mol Biotechnol 2001; 19 (2): 169-77.
    [48] Schiller JT, Lowy DR. Papillomavirus-like particle based vaccines: cervical cancer and beyond. Expert Opin Biol Ther 2001; 1 (4): 571-81.
    [49] Noad R, Roy P. Virus-like particles as immunogens. Trends Microbiol 2003; 11 (9): 438-44.
    [50] Urakawa T, Ferguson M, Minor PD, Cooper J, Sullivan M, Almond JW, et al. Synthesis of immunogenic, but non-infectious, poliovirus particles in insect cells by a baculovirus expression vector. J Gen Virol 1989; 70: 1453-63.
    [51] Gheysen D, Jacobs E, de Foresta F, Thiriart C, Francotte M, Thines D, et al. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 1989; 59: 103-12.
    [52] Luo L, Li Y, Cannon P, Kim S, Kang CY. Chimeric gag-V3 virus-like particles of human immunodeficiency virus induce virus-neutralizing antibodies. Proc Natl Acad Sci 1992; 89: 10527-31.
    [53] Luo L, Li Y, Kang CY. Expression of gag precursor protein and secretion of virus-like gag particles of HIV-2 from recombinant baculovirus-infected insect cells. Virology 1990; 179: 874-80.
    [54] Nermut M, Hockley D, Jowett J, Jones I, Garreau M, Thomas D. Fullerene-like organization of HIV gag-protein shell in virus-like particles produced by recombinant baculovirus. Virology 1994; 198: 288-96.
    [55] Kajigawa S, Shimada T, Fujita S, Young NS. A genetically engineered cell line that produces empty capsids of B19 (human) parvovirus. Proc Natl Acad Sci 1989; 86: 7601-5.
    [56] Hu YC, Bentley WE, Edwards GH, Vakharia VN. Chimeric infectious bursal disease virus-like particles expressed in insect cells and purified by immobilized metal affinity chromatography. Biotechnol Bioeng 1999; 63 (6): 721-9.
    [57] Bentley WE, Wang MY, Vakharia V. Development of an efficient bioprocess for poultry vaccines using high-density insect cell culture. Ann N Y Acad Sci 1994; 745: 336-59.
    [58] Ho Y, Lin PH, Liu CY, Lee SP, Chao YC. Assembly of human severe acute respiratory syndrome coronavirus-like particles. Biochem Biophys Res Commun 2004; 318 (4): 833-8.
    [59] Wang K-C, Wu J-C, Chung Y-C, Ho Y-C, Chang MD-T, Hu Y-C. Baculovirus as a highly efficient gene delivery vector for the expression of hepatitis delta virus antigens in mammalian cells. Biotechnol Bioeng 2005; 89: 464-73.
    [60] Baxt B, Morgan DO, Robertson BH, Timpone CA. Epitopes on foot-and-mouth disease virus outer capsid protein VP1 involved in neutralization and cell attachment. J Virol 1984; 51 (2): 298-305.
    [61] Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature 1989; 337 (6209): 709-16.
    [62] Harmann CM, Schwimmbeck PL, Mertens T, Schulthesiss HP, Strauer BE. Identification of serotype-specific and nonserotype-specific B-Cell epitopes of coxsackie B virus using synthetic peptides. Virology 1994; 200: 381-9.
    [63] Minor PD. The molecular biology of poliovaccines. J Gen Virol 1992; 73: 3065-77.
    [64] Reimann BY, Zell R, Kandolf R. Mapping of a neutralizing antigenic site of coxsackie B4 by construction of an antigenic chimera. J Virol 1991; 65: 3475-80.
    [65] Muir P, Kammerer U, Korn K, Mulders MN, Poyry T, Weissbrich B, et al. Molecular typing of enteroviruses: current status and future requirements. Clin Microbiol Rev 1998; 11: 202-27.
    [66] Fox G, Parry NR, Barnett PV, McGinn B, Rowlands DJ, Brown F. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J Gen Virol 1989; 70: 625-37.
    [67] Wetz K, Habermehl KO. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of poliovirus. J Gen Virol 1982; 59: 397-401.
    [68] Mateu MG. Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Res 1995; 38: 1-24.
    [69] Minor PD, Ferguson M, Evans DMA, Almond JW, Icenogle JP. Antigenic structure of polioviruses of serotypes 1, 2 and 3. J Gen Virol 1986; 67: 1283-91.
    [70] Hummeler K, Anderson TF, Brown RA. Identification of poliovirus particles of different antigenicity by specific agglutination as seen in the electron microscope. Virology 1962; 16: 84-90.
    [71] Ansardi DC, Porter DC, Morrow CD. Coinfection with recombinant vaccinia viruses expressing poliovirus P1 and P3 proteins results in polyprotein processing and formation of empty capsid structures. J Virol 1991; 65 (4): 2088-92.
    [72] Brautigam S, Snezhkov E, Bishop DH. Formation of poliovirus-like particles by recombinant baculoviruses expressing the individual VP0, VP3, and VP1 proteins by comparison to particles derived from the expressed poliovirus polyprotein. Virology 1993; 192 (2): 512-24.
    [73] Antoine FS. First human gene transfer trial. J Natl Cancer Inst 1988; 80 (17): 1364-5.
    [74] Petry H, Goldmann C, Ast O, Luke W. The use of virus-like particles for gene transfer. Curr Opin Mol Ther 2003; 5 (5): 524-8.
    [75] Cui Z, Mumper RJ. Microparticles and nanoparticles as delivery systems for DNA vaccines. Crit Rev Ther Drug Carrier Syst 2003; 20 (2-3): 103-37.
    [76] Smith GE, Summers MD, Fraser MJ. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 1983; 3 (12): 2156-65.
    [77] Luckow V.A. SMD. Treads in the development of baculovirus expression vectors. Biotechnol 1988; 6: 47-55.
    [78] Possee RD. Baculoviruses as expression vectors. Curr Opin Biotechnol 1997; 8 (5): 569-72.
    [79] Miller LK. The Baculoviruses. New York: Plenum Press, 1997.
    [80] Granados RR, Federici BA. The biology of baculoviruses. Florida: CRC Press, Boca Raton, 1986.
    [81] Murhammer DW. The use of insect cell cultures for recombinant protein synthesis: Engineering aspects. Appl Biochem Biotechnol 1991; 31 (3): 283-310.
    [82] King L.A. PRD. The Baculovirus Expression System. London: Chaman & Hall, 1992.
    [83] Murphy CI, Piwnica-Worms H, Grunwald S, Romanow WG, Francis N, Fan HY. Overview of the baculovirus expression system. Curr Protoc Mol Biol 2004; Chapter 16: Unit16.9.
    [84] Hu YC, Hsu JT, Huang JH, Ho MS, Ho YC. Formation of enterovirus-like particle aggregates by recombinant baculoviruses co-expressing P1 and 3CD in insect cells. Biotechnol Lett 2003; 25 (12): 919-25.
    [85] Murhammer D.W. GCF. Scaleup of insect cells cultures: protective effects of pluronic F-68. Biotechnol 1988; 6: 1441-8.
    [86] Hu YC, Bentley WE. Effect of MOI ratio on the composition and yield of chimeric infectious bursal disease virus-like particles by baculovirus co-infection: deterministic predictions and experimental results. Biotechnol Bioeng 2001; 75 (1): 104-19.
    [87] Hu YC, Liu HJ, Chung YC. High level expression of the key antigenic protein, sC, from avian reovirus into insect cells and its purification by immobilized metal affinity chromatography. Biotechnol Lett 2002; 24: 1017-22.
    [88] Shih SR, Ho MS, Lin KH, Wu SL, Chen YT, Wu CN, et al. Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases of hand, foot and mouth disease during an epidemic in Taiwan, 1998. Virus Res 2000; 68 (2): 127-36.
    [89] Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. AmerJHyg 1938; 27: 493-7.
    [90] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227 (5259): 680-5.
    [91] Melnick JL, Wimberly IL. Lyophilized combination pools of enterovirus equine antisera: new LBM pools prepared from reserves of antisera stored frozen for two decades. Bull World Health Organ 1985; 63 (3): 543-50.
    [92] Chang L, Gusewitch GA, Chritton DB, Folz JC, Lebeck LK, Nehlsen-Cannarella SL. Rapid flow cytometric assay for the assessment of natural killer cell activity. J Immunol Methods 1993; 166 (1): 45-54.
    [93] Kutubuddin M, Simons J, Chow M. Poliovirus-specific major histocompatibility complex class I-restricted cytolytic T-cell epitopes in mice localize to neutralizing antigenic regions. J Virol 1992; 66 (10): 5967-74.
    [94] Yu CK, Chen CC, Chen CL, Wang JR, Liu CC, Yan JJ, et al. Neutralizing antibody provided protection against enterovirus type 71 lethal challenge in neonatal mice. J Biomed Sci 2000; 7 (6): 523-8.
    [95] Chen YC, Yu CK, Wang YF, Liu CC, Su IJ, Lei HY. A murine oral enterovirus 71 infection model with central nervous system involvement. J Gen Virol 2004; 85: 69-77.
    [96] Arnold E, Luo M, Vriend G, Rossmann MG, Palmenberg AC, Parks GD, et al. Implications of picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci USA 1987; 84: 21-5.
    [97] Breitburd F, Kirnbauer R, Hubbert NL, Nonnenmacher B, Trindinhdesmarquet C, Orth G, et al. Immunization with virus-like particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J Virol 1995; 69 (6): 3959-63.
    [98] Suzich JA, Ghim SJ, Palmerhill FJ, White WI, Tamura JK, Bell JA, et al. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc Natl Acad, Sci USA 1995; 92 (25): 11553-7.
    [99] Yao Q, Bu Z, Vzorov A, Yang C, Compans RW. Virus-like particle and DNA-based candidate AIDS vaccines. Vaccine 2003; 2003: 638-43.
    [100] Garcea RL, Gissmann L. Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr Opin Biotechnol 2004; 15: 513-7.
    [101] Tacket CO, Sztein MB, Losonsky GA, Wasserman SS, Estes MK. Humoral, mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers. Clin Immunol 2003; 108: 241-7.
    [102] Wu SC, Liu CC, Lian WC. Optimization of microcarrier cell culture process for the inactivated enterovirus type 71 vaccine development. Vaccine 2004; 22 (29-30): 3858-64.
    [103] Chung YC, Huang JH, Lai CW, Sheng HC, Shih SR, Ho MS, et al. Expression, purification and characterization of enterovirus-71 virus-like particles. World J Gastroenterol 2006; 12 (6): 921-7.
    [104] Kung SH, Wang SF, Huang CW, Hsu CC, Liu HF, Yang JY. Genetic and antigenic analyses of enterovirus 71 isolates in Taiwan during 1998-2005. Clin Microbiol Infect 2007; 13 (8): 782-7.
    [105] Yang R, Murillo FM, Cui H, Blosser R, Uematsu S, Takeda K, et al. Papillomavirus-like particles stimulate murine bone marrow-derived dendritic cells to produce alpha interferon and Th1 immune responses via MyD88. J Virol 2004; 78 (20): 11152-60.
    [106] Wahid R, Cannon MJ, Chow M. Virus-specific CD4+ and CD8+ cytotoxic T-cell responses and long-term T-cell memory in individuals vaccinated against polio. J Virol 2005; 79 (10): 5988-95.
    [107] Schiller JT, Lowy DR. Papillomavirus-like particles and HPV vaccine development. Seminars in Cancer Biology 1996; 7 (6): 373-82.
    [108] Gamvrellis A, Leong D, Hanley JC, Xiang SD, Mottram P, Plebanski M. Vaccines that facilitate antigen entry into dendritic cells. Immunol Cell Biol 2004; 82 (5): 506-16.
    [109] Roth JF. The yeast Ty virus-like particles. Yeast 2000; 16 (9): 785-95.
    [110] Lo-Man R, Rueda P, Sedlik C, Deriaud E, Casal I, Leclerc C. A recombinant virus-like particle system derived from parvovirus as an efficient antigen carrier to elicit a polarized Th1 immune response without adjuvant. European Journal of Immunology 1998; 28 (4): 1401-7.
    [111] Quan FS, Huang C, Compans RW, Kang SM. Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J Virol 2007; 81 (7): 3514-24.
    [112] Emini EA, Jameson BA, Wimmer E. PRIMING FOR AND INDUCTION OF ANTI-POLIOVIRUS NEUTRALIZING ANTIBODIES BY SYNTHETIC PEPTIDES. Nature 1983; 304 (5928): 699-703.
    [113] Denis J, Majeau N, Acosta-Ramirez E, Savard C, Bedard MC, Simard S, et al. Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: evidence for the critical function of multimerization. Virology 2007; 363 (1): 59-68.
    [114] Zinkernagel RM. On natural and artificial vaccinations. Annu Rev Immunol 2003; 21: 515-46.
    [115] Page GS, Mosser AG, Hogle JM, Filman DJ, Rueckert RR, Chow M. 3-DIMENSIONAL STRUCTURE OF POLIOVIRUS SEROTYPE-1 NEUTRALIZING DETERMINANTS. Journal of Virology 1988; 62 (5): 1781-94.
    [116] Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 1985; 317 (6033): 145-53.
    [117] Muckelbauer JK, Kremer M, Minor I, Tong L, Zlotnick A, Johnson JE, et al. Structure determination of coxsackievirus B3 to 3.5 A resolution. Acta Crystallogr D Biol Crystallogr 1995; 51 (Pt 6): 871-87.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE