簡易檢索 / 詳目顯示

研究生: 陳奕廷
Chen, Yi-Ting
論文名稱: 反應式直流磁控濺鍍法製備抗沾黏高熵薄膜之研究
Study on Anti-sticking High-entropy Films Produced by DC Reactive Magnetron Sputtering
指導教授: 葉均蔚
Yeh, Jien-Wei
李紫原
Lee, Chi-Young
口試委員: 洪健龍
曹春暉
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 197
中文關鍵詞: 抗沾黏薄膜高熵合金濺鍍
外文關鍵詞: Anti-sticking Films, High-entropy Alloys, Sputtering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用真空電弧熔煉製備非等莫耳高熵合金靶材一號和高熵合金靶材二號,並以反應式直流磁控濺鍍法鍍製高熵薄膜,探討在不同的製程參數下薄膜的微結構、晶體結構、機械性質與接觸角值,並對薄膜進行大氣退火以及真空退火處理,評估此高熵膜之抗氧化性與熱穩定性,最後選擇接觸角表現最佳之薄膜鍍覆於圓盤上,進行實際模擬烹煮試驗和耐酸鹼測試。
    實驗結果發現, 最佳參數下一號合金表面鍍層具有緻密、非晶結構,對應接觸角的最大值 83.5°,更高的腔體溫度和基板偏壓會造成結晶性的提升,伴隨接觸角的下降。薄膜在 1100℃ 大氣退火兩小時後,氧化層厚度約為 187 nm ,顯示氧化情況並不嚴重,具備優良的抗氧化性。在熱穩定性方面,薄膜在 600℃ 真空退火一小時後,非晶結構即轉變為非晶 + FCC 奈米晶的混合結構,隨著退火溫度提升至 800℃,表面形貌則無明顯變化。實際模擬烹煮試驗中,最佳參數薄膜確實擁有優良之抗沾黏效果,可以有效避免食物的黏附。最後,浸泡工研醋和碳酸氫鈉水溶液後,薄膜均能保持完整,沒有剝落或腐蝕痕跡,顯示薄膜亦具有良好之耐酸鹼性。
    另一方面,二號合金表面鍍層,由於 B 含量偏低,使高熵合金的高熵效應、晶格扭曲效應和遲緩擴散效應無法確實彰顯,不易維持非晶結構,故隨著基板偏壓的提升,結晶性增加使得接觸角明顯下降,在模擬烹煮實驗中,抗沾黏效果不如一號合金表面鍍層。整體而言,一號合金表面鍍層有良好的抗沾黏特性,於家用鍋具的應用極具商業潛力。


    Two series of High-entropy thin films were sputter-deposited on silicon wafers. By the systematic variation of gas flow ratio (R), chamber temperature (TC) and substrate bias (VS), microstructure, crystal structure, contact angle and oxidation resistance have been investigated. Furthermore, stainless steel cooking plates deposited with optimal films were studied to evaluate their anti-sticking performance and acid / base resistance.
    The results show that #1 thin film exhibits a dense and amorphous structure, with highest contact angle 83.5°. Besides, the film displays excellent oxidation resistance. After air annealing at 1100℃ for 2h, the oxidation layer is only 187 nm. The plates with optimal films have good anti-sticking property in actual cooking test. And after soaking in vinegar and NaHCO3 solution, the films remain intact, without corrosion or peeling off.
    On the other hand, #2 thin film shows less stability of amorphous structure. With the increasing substrate bias, the crystallinity increases and the contact angle drops.
    This research demonstrates that #1 thin film performs good anti-sticking property and do have a potential for the application in cooking wares.

    目 錄 致 謝 I 摘 要 V Abstract VII 目 錄 IX 圖目錄 XIV 表目錄 XXIV 壹、前言 1 貳、文獻回顧 4 2.1 薄膜鍍製技術 4 2.1.1 濺鍍原理 4 2.1.2 反應式濺鍍 5 2.1.3 直流濺鍍 7 2.1.4 磁控濺鍍 8 2.1.5 薄膜沉積與附著機制 11 2.1.6 薄膜微結構 13 2.2 薄膜的發展與種類 18 2.2.1薄膜發展概況 18 2.2.2薄膜分類與介紹 19 2.2.3薄膜硬化機制 23 2.3 不沾鍋發展現況及瓶頸 25 2.4 高熵合金的發展與沿革 26 2.4.1高熵合金定義 26 2.4.2高熵合金特點 28 2.4.3高熵氮化膜沿革 31 2.5本研究之目的 32 參、實驗流程 34 3.1 實驗設計 34 3.2 鍍膜準備 35 3.2.1靶材製作 35 3.2.2基板準備 37 3.2.3薄膜鍍製 38 3.3薄膜基本性質分析 48 3.3.1 成分分析 48 3.3.2 晶體結構分析 49 3.3.3 微結構分析 49 3.3.4 表面粗糙度分析 50 3.4 薄膜機械性質分析 52 3.4.1 殘留應力分析 52 3.4.2 硬度和楊式模數分析 54 3.4.3 接觸角分析 56 3.5 薄膜抗氧化性與熱穩定性分析 57 3.5.1 抗氧化性 57 3.5.2 熱穩定性 57 3.6 薄膜耐酸鹼能力測試 57 肆、結果與討論 59 4.1 氣體流率變量對薄膜之影響 59 4.1.1 鍍率分析 59 4.1.2 成分分析 62 4.1.3 晶體結構分析 64 4.1.4 表面形貌與微結構分析 66 4.1.5 殘留應力分析 71 4.1.6 硬度與楊氏模數分析 73 4.1.7 表面粗糙度分析 78 4.1.8 接觸角值分析 84 4.2 腔體溫度變量對薄膜之影響 91 4.2.1 鍍率分析 91 4.2.2 成分分析 93 4.2.3 晶體結構分析 95 4.2.4 表面形貌與微結構分析 97 4.2.5 殘留應力分析 101 4.2.6 硬度與楊氏模數分析 103 4.2.7 表面粗糙度分析 107 4.2.8 接觸角值分析 112 4.3 基板偏壓變量對薄膜之影響 122 4.3.1 鍍率分析 122 4.3.2 成分分析 125 4.3.3 晶體結構分析 127 4.3.4 表面形貌與微結構分析 129 4.3.5 殘留應力分析 134 4.3.6 硬度與楊氏模數分析 136 4.3.7 表面粗糙度分析 141 4.3.8 接觸角值分析 146 4.4 薄膜抗氧化性分析 153 4.4.1 腔體溫度變量之薄膜抗氧化性分析 153 4.5.2基板偏壓變量之薄膜抗氧化性分析 157 4.5 薄膜熱穩定性分析 160 4.5.1 腔體溫度變量之薄膜熱穩定性分析 160 4.5.2 基板偏壓變量之薄膜熱穩定性分析 167 4.6 最佳參數薄膜沾黏試驗 177 4.6.1 實際模擬烹飪試驗 177 4.7 最佳參數薄膜耐酸鹼實驗 184 伍、結論 187 陸、本研究之貢獻 190 柒、未來研究方向 191 參考文獻 192

    參考文獻
    [1] Yeh, J.W., Recent progress in high-entropy alloys. Annales de Chimie-Science des Matériaux, 2006. 31: p. 633-648.
    [2] Tsai, M.H. and J.W. Yeh, High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014. 2(3): p. 107-123.
    [3] Yeh, J.W., et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6: p. 299-303.
    [4] Yang, Y.-S., et al., Anti-sticking Effects of Cr-N and Zr-DLC Films on Microinjection Molding for LGP Applications. Advanced Materials Research, 2011. 179-180: p. 339-344.
    [5] Sun, C.-C., et al., Surface Free Energy of Alloy Nitride Coatings Deposited Using Closed Field Unbalanced Magnetron Sputter Ion Plating. Materials Transactions, 2006. 47: p. 2533-2539.
    [6] Thobor-Keck, A., et al., Influence of silicon addition on the oxidation resistance of CrN coatings. Surface and Coatings Technology, 2005. 200(1-4): p. 264-268.
    [7] Tritremmel, C., et al., Influence of Al and Si content on structure and mechanical properties of arc evaporated Al–Cr–Si–N thin films. Thin Solid Films, 2013. 534: p. 403-409.
    [8] Rother, B. and H. Kappl, Surface and Coatings Technology, 1997. 96: p. 163-168.
    [9] Grove, W.R., On the Electro-Chemical Polarity of Gases. Philosophical Transactions of the Royal Society of London, 1852. 142: p. 87-101.
    [10] Depla, D., S. Mahieu, and J.E. Greene, Chapter 5 - Sputter Deposition Processes, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, Boston: William Andrew Publishing. p. 253-296.
    [11] Mattox, D.M., Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering), in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D.M. Mattox, Editor. 2010, Boston: William Andrew Publishing. p. 237-286.
    [12] Liljeholm, L., Reactive Sputter Deposition of Functional Thin Films. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 2012. 945: p. 55.
    [13] G, S., Walton, and J.E. Greene, Chapter 2 - Plasmas in Deposition Processes, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, Boston: William Andrew Publishing. p. 32-92.
    [14] Available from: http://marriott.tistory.com/97.
    [15] Kelly, P.J. and R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172.
    [16] Greene, J.E., Chapter 12 - Thin Film Nucleation, Growth, and Microstructural Evolution: An Atomic Scale View, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, Boston: William Andrew Publishing. p. 554-620.
    [17] Mattox, D.M., Chapter 10 - Atomistic Film Growth and Some Growth-Related Film Properties, in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D.M. Mattox, Editor. 2010, Boston: William Andrew Publishing. p. 333-398.
    [18] Movchan, B.A. and A.V. Demchishin, Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Oxide. The Physics of Metals and Metallography, 1969. 28: p. 83-90.
    [19] Messier, R., A.P. Giri, and R. A.Roy, Revised Structure Zone Model for Thin Film Physical Structure. Journal of Vacuum Science & Technology A, 1984. 2: p. 500-503.
    [20] Thornton, J.A., High Rate Thick Film Growth. Annyal Review of Materials Science, 1977. 7: p. 239-260.
    [21] Trindade, B., A. Cavaleiro, and M.T. Vieira, The Influence of the Addition of a Third Element on the Structure and Mechanical Properties of Transition-Metal-Based Nanostructured Hard Films: Part II—Carbides, in Nanostructured Coatings, A.C.a.J.T.M.D. Hosson, Editor. 2006, Springer New York.
    [22] Veprek, S. and M.J.G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings. Surface and Coatings Technology, 2008. 202: p. 5063-5073.
    [23] Musil, J., Hard Nanocomposite Coatings: Thermal Stability, Oxidation Resistance and Toughness. Surface & Coatings Technology, 2012. 207: p. 50-65.
    [24] Veprek, S., et al., Superhard Nanocomposites: Origin of Hardness Enhancement, Properties and Applications. Surface & Coatings Technology, 2010. 204: p. 1898-1906.
    [25] Lin, J., et al., The Structure and Mechanical and Tribological Properties of TiBCN Nanocomposite Coatings. Acta Materialia, 2010. 58: p. 1554-1564.
    [26] Yashar, P.C. and W.D. Sproul, Nanometer Scale Multilayered Hard Coatings. Vacuum, 1999. 55: p. 179-190.
    [27] Musil, J., Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 2000. 125: p. 322-330.
    [28] Engström, C., et al., Interdiffusion Studies of Single Crystal TiN/NbN Superlattice Thin Films. Journal of Vacuum Science & Technology A, 1999. 17: p. 2920-2927.
    [29] Holleck, H. and V. Schier, Multilayer PVD Coatings for Wear Protection. Surface and Coatings Technology, 1995. 76-77: p. 328-336.
    [30] Martin, P.M., Handbook of deposition technologies for films and coatings: science, applications and technology. 2009: William Andrew.
    [31] Lu, K., Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Materials Science and Engineering: R: Reports, 1996. 16: p. 161-221.
    [32] Huang, P.K., et al., Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials, 2004. 6: p. 74-78.
    [33] Yeh, J.W., Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM, 2013. 65: p. 1759-1771.
    [34] Murty, B.S., J.W. Yeh, and S. Ranganathan, High-Entropy Alloys. London: Elsevier, 2014.
    [35] Tsai, K.Y., M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897.
    [36] 張慧紋, 以反應式直流濺鍍法製備Al-Cr-Mo-Si-Ti高熵氮化物薄膜及其性質探討, in Materials Science and Engineering. 2005, National Tsing Hua University: Taiwan.
    [37] 賴思維, 以反應式直流濺鍍法製備AlBCrSiTi 高熵氮化物薄膜及其性質探討, in Materials Science and Engineering. 2006, National Tsing Hua University: Taiwan.
    [38] 黃炳剛, AlCrNbSiTiV高熵合金及其氮化物濺鍍薄膜之研究, in Materials Science and Engineering. 2009, National Tsing Hua University: Taiwan.
    [39] 沈宛叡, AlCrNbSiTi高熵合金與其氮化物薄膜微結構、機械性質與高溫氧化行為之研究, in Materials Science and Engineering. 2014, National Tsing Hua University: Taiwan.
    [40] 謝明曉, (AlCrNbSiTi)薄膜田口法最佳化之研究, in Materials Science and Engineering. 2011, National Tsing Hua University: Taiwan.
    [41] 張境芳, Al-Cr-Nb-Si-Ta 高熵氮化膜之開發研究, in Materials Science and Engineering. 2013, National Tsing Hua University: Taiwan.
    [42] 蔡佳凌, 反應式直流磁控濺鍍法製備 (Al,Cr,Nb,Si,B,C)100-xNx高熵薄膜之研究, in Materials Science and Engineering. 2014, National Tsing Hua University: Taiwan.
    [43] 陳姵希, 反應式直流磁控濺鍍法製備抗沾黏高熵氮化膜之研究, in Materials Science and Engineering. 2017, National Tsing Hua University: Taiwan.
    [44] Shackelford, W.A.J.F., CRC Handbook of Material Science and Engineering. 3rd ed. 2001, University of California, Davis.
    [45] Pierson, H.O., Handbook of refractory carbides and nitrides, v.N. Publications, Editor. 1996: New Jersey.
    [46] Mitterer, C., P.H. Mayrhofer, and J. Musil, Thermal stability of PVD hard coatings. Vacuum, 2003. 71: p. 279-284.
    [47] Overview of Mechanical Testing Standards. Applications Bulletin, 2002. 18.
    [48] Ducros, C. and F. Sanchette, Multilayered and nanolayered hard nitride thin films deposited by cathodic arc evaporation. Part 2: Mechanical properties and cutting performances. Surface and Coatings Technology, 2006. 201(3-4): p. 1045-1052.
    [49] Sclerometry, Nanoscratching and Nanoindentation – Surface Characterisation with the NTEGRA from NT-MDT. 2015; Available from: https://www.azom.com/article.aspx?ArticleID=4076.
    [50] Mason, R.S. and M. Pichilingi, Journal of Physics D-Applied Physics, 1994. 27: p. 2363-2371.
    [51] Huffman, G.L., et al., Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1989. 7: p. 2252-2255.
    [52] J. Ullmann, A.J. Kellock, and J.E.E. Baglin, Reduction of intrinsic stress in cubic boron nitride films. Thin Solid Films, 1999. 341: p. 238-245.
    [53] Bubenzer, A., et al., rf‐plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications. Journal of Applied Physics, 1983. 54: p. 4590-4595.
    [54] Mattox, D.M., Particle bombardment effects on thin‐film deposition: A review. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1989. 7: p. 1105-1114.

    QR CODE