研究生: |
王永凱 Wang, Yung-Kai |
---|---|
論文名稱: |
橢圓家族一號蛋白作為植物古氏蛋白的作用蛋白並參與雙股DNA斷裂的修復 Ovate Family Protein 1 as a Plant Ku70 Interacting Protein Involving in DNA Double-strand Break Repair |
指導教授: |
潘榮隆
Pan, Rong-Long |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 古氏蛋白 、橢圓家族一號蛋白 |
外文關鍵詞: | Ku protein, Ovate family protein 1 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
DNA修復系統在維持基因完整度上是極為重要的,真核細胞發展出兩個主要的機制進行修補斷裂的雙股DNA:同源性重組(homologous recombination)和非同源末端結合(non-homologous end-joining)。在植物體中,目前大多認為主要是利用非同源末端結合的途徑去修補斷裂的雙股DNA。古氏蛋白異二聚體(Ku heterodimer protein)為非同源末端結合途徑的一種修復蛋白複合體,其包含分子量分別為70和80 kDa的兩個次單元體,此蛋白已經在許多植物中被證明出來(例如:綠豆、稻米、阿拉伯芥),且其功能與哺乳動物中的Ku蛋白有不少相似之處。在本實驗中,我們利用酵母菌雙雜合系統(yeast two-hybrid system)和GST融合蛋白沉澱實驗(GST pull-down assay)證明阿拉伯芥橢圓家族一號蛋白(Arabidopsis thaliana ovate family protein 1)與古氏蛋白有交互的作用。此橢圓家族基因最早是從蕃茄中證明而得,當時發現此基因的單點突變會造成番茄果實的外觀由圓形轉變成梨形。我們想要進一步瞭解橢圓家族一號蛋白與古氏蛋白在植物中所扮演的生理意義,因此將阿拉伯芥古氏蛋白70 (AtKu70)區分成不同的片段,結果發現古氏蛋白是利用其C端與橢圓家族一號蛋白進行相互作用。此外我們也利用電泳移動率變動分析(electrophoretic mobility shift assay)證明橢圓家族一號蛋白亦為DNA結合蛋白,主要是藉由其N端的區域與DNA結合。我們更發現在三週大的阿拉伯芥植株中,橢圓家族一號基因會受到造成DNA損傷的藥劑(例如:甲烷磺酸甲酯(methyl methanesulfonate;MMS)及亞硫酸氫鈉甲(2-methyl-1,4- naphthoquinone;menadione))刺激而隨著時間增加其基因的表現量。另一方面,將橢圓家族一號蛋白缺失的突變株與野生型植株相比,其在生長過程中對於這些藥劑的處理更加敏感而易凋零。此外在in vivo實驗中,橢圓家族一號蛋白缺失的細胞其非同源末端結合的活性也相對的降低,此結果類似於古氏蛋白70和80缺失的細胞。綜合以上結果,我們推測橢圓家族一號蛋白或許與古氏蛋白一同透過非同源末端結合的途徑參與在DNA修復機制中。
Ahnesorg P, Smith P, Jackson SP (2006) XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124: 301-313
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657
Baumann P, Cech TR (2000) Protection of telomeres by the Ku protein in fission yeast. Mol Biol Cell 11: 3265-3275
Boulton SJ, Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17: 1819-1828
Bundock P, van Attikum H, Hooykaas P (2002) Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Res 30: 3395-3400
Chang WC, Wang YK, Liu PF, Tsai YF, Kong LR, Lin CK, Yang CH, Pan RL (2008) Regulation of Ku gene promoters in Arabidopsis by hormones and stress. Funct Plant Biol 35: 265-280
Chen L, Trujillo K, Sung P, Tomkinson AE (2000) Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J Biol Chem 275: 26196-26205
d'Adda di Fagagna F, Hande MP, Tong WM, Roth D, Lansdorp PM, Wang ZQ, Jackson SP (2001) Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11: 1192-1196
Downs JA, Jackson SP (2004) A means to a DNA end: the many roles of Ku. Nat Rev Mol Cell Biol 5: 367-378
Dynan WS, Yoo S (1998) Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 26: 1551-1559
Featherstone C, Jackson SP (1999) Ku, a DNA repair protein with multiple cellular functions? Mutat Res 434: 3-15
Friesner J, Britt AB (2003) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34: 427-440
Gallego ME, Bleuyard JY, Daoudal-Cotterell S, Jallut N, White CI (2003a) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35: 557-565
Gallego ME, Jalut N, White CI (2003b) Telomerase dependence of telomere lengthening in Ku80 mutant Arabidopsis. Plant Cell 15: 782-789
Gorbunova V, Avivi-Ragolski N, Shalev G, Kovalchuk I, Abbo S, Hohn B, Levy AA (2000) A new hyperrecombinogenic mutant of Nicotiana tabacum. Plant J 24: 601-611
Haber JE (2000) Recombination : a frank view of exchanges and vice versa. Curr Opin Cell Biol 12: 286-292
Hackbusch J, Richter K, Muller J, Salamini F, Uhrig JF (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci U S A 102: 4908-4912
Hong JP, Byun MY, An K, Yang SJ, An G, Kim WT (2010) OsKu70 is associated with developmental growth and genome stability in rice. Plant Physiol 152: 374-387
Hsu HL, Gilley D, Galande SA, Hande MP, Allen B, Kim SH, Li GC, Campisi J, Kohwi-Shigematsu T, Chen DJ (2000) Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14: 2807-2812
Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci U S A 94: 11786-11791
Li J, Vaidya M, White C, Vainstein A, Citovsky V, Tzfira T (2005) Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci U S A 102: 19231-19236
Lieber MR (1999) The biochemistry and biological significance of nonhomologous DNA end joining : an essential repair process in multicellular eukaryotes. Genes Cells 4: 77-85
Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A 99: 13302-13306
Liu PF, Chang WC, Wang YK, Munisamy SB, Hsu SH, Chang HY, Wu SH, Pan RL (2007) Differential regulation of Ku gene expression in etiolated mung bean hypocotyls by auxins. Biochim Biophys Acta 1769: 443-454
Liu PF, Chang WC, Wang YK, Chang HY, Pan RL (2008a) Signaling pathways mediating the suppression of Arabidopsis thaliana Ku gene expression by abscisic acid. Biochim Biophys Acta 1779: 164-174
Liu PF, Wang YK, Chang WC, Chang HY, Pan RL (2008b) Regulation of Arabidopsis thaliana Ku genes at different developmental stages under heat stress. Biochim Biophys Acta 1779: 402-407
Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108: 781-794
Ma Y, Schwarz K, Lieber MR (2005) The Artemis: DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amst) 4: 845-851
Mahaney BL, Meek K, Lees-Miller SP (2009) Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 417: 639-650
Mimori T, Akizuki M, Yamagata H, Inada S, Yoshida S, Homma M (1981) Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J Clin Invest 68: 611-620
Mimori T, Hardin JA (1986) Mechanism of interaction between Ku protein and DNA. J Biol Chem 261: 10375-10379
Pagnussat GC, Yu HJ, Sundaresan V (2007) Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. Plant Cell 19: 3578-3592
Riha K, Shippen DE (2003) Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in Arabidopsis. Proc Natl Acad Sci U S A 100: 611-615
Riha K, Watson JM, Parkey J, Shippen DE (2002) Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J 21: 2819-2826
Samper E, Goytisolo FA, Slijepcevic P, van Buul PP, Blasco MA (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1: 244-252
Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127: 1466-1475
Song K, Jung D, Jung Y, Lee SG, Lee I (2000) Interaction of human Ku70 with TRF2. FEBS Lett 481: 81-85
Tamura K, Adachi Y, Chiba K, Oguchi K, Takahashi H (2002) Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. Plant J 29: 771-781
Tuteja N, Tuteja R, Ochem A, Taneja P, Huang NW, Simoncsits A, Susic S, Rahman K, Marusic L, Chen J (1994) Human DNA helicase II: a novel DNA unwinding enzyme identified as the Ku autoantigen. EMBO J 13: 4991-5001
van Attikum H, Bundock P, Overmeer RM, Lee LY, Gelvin SB, Hooykaas PJ (2003) The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 31: 4247-4255
Wang S, Chang Y, Guo J, Chen JG (2007) Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation. Plant J 50: 858-872
Wang Y, Ghosh G, Hendrickson EA (2009) Ku86 represses lethal telomere deletion events in human somatic cells. Proc Natl Acad Sci U S A 106: 12430-12435
Watson JM, Shippen DE (2007) Telomere rapid deletion regulates telomere length in Arabidopsis thaliana. Mol Cell Biol 27: 1706-1715
Wei C, Skopp R, Takata M, Takeda S, Price CM (2002) Effects of double-strand break repair proteins on vertebrate telomere structure. Nucleic Acids Res 30: 2862-2870
West CE, Waterworth WM, Jiang Q, Bray CM (2000) Arabidopsis DNA ligase IV is induced by gamma-irradiation and interacts with an Arabidopsis homologue of the double strand break repair protein XRCC4. Plant J 24: 67-78
West CE, Waterworth WM, Story GW, Sunderland PA, Jiang Q, Bray CM (2002) Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J 31: 517-528
Yoo S, Dynan WS (1998) Characterization of the RNA binding properties of Ku protein. Biochemistry 37: 1336-1343
Zellinger B, Akimcheva S, Puizina J, Schirato M, Riha K (2007) Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis. Mol Cell 27: 163-169