簡易檢索 / 詳目顯示

研究生: 陳易馨
Chen, Yi-Hsin
論文名稱: 利用停止不移動的光脈衝所建立之全光學開關
All-optical switching based on motionaless light pulses
指導教授: 余怡德
Yu, Ite A.
口試委員: 江進福
郭西川
陳應誠
韓殿君
陳泳帆
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 108
中文關鍵詞: 全光學開關電磁波引發透明靜止脈衝慢光四波混和
外文關鍵詞: all-optical switching, electromagnetically induced transparency, stationary light pulse, slow light, four-wave mixing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Photons are superior information carriers. The ability of manipulating photons with high fidelity is central to the realization of quantum communications and quantum computations. Among a variety of experimental schemes, the all-optical switching (AOS) and cross-phase modulation (XPM), which were based on the idea of electromagnetically induced transparency (EIT), have provided a workable way for manipulating photonic information. AOS and XPM are optical processes of nonlinear nature, in which the photons can interact with each other via the photon-atom interaction sustained by an EIT medium. The efficiency of a non-linear optical process is proportional to the interaction time. In order to achieve the adequate nonlinearity so that two light pulses can interact with each other for a long duration in a medium, one pulse can be stopped as stationary light pulse (SLP), while the other is stopped as stored light. A sufficiently high optical density (OD) is required to make a light pulse stationary and hence, prolong the interaction time. By considering cold atomic media, we provide the theoretical studies and experiments to realize the enhanced nonlinearity. Theoretical analysis shows that our approach can achieve efficiency below a single photon level per atomic absorption cross section. Comparing to the existing approach by using moving light pulses, in which 2 photons per atomic absorption cross section were observed in the best situation, our experimental results by employing an SLP and a stored light pulse significantly improve the efficiency, as only 0.56 photons are needed. Moreover, the simulation results also confirm that the efficiency could be further improved by increasing the optical density of the medium without any upper limit.
    The existence of four-wave mixing (FWM) process in a general four-level AOS or XPM system would greatly degrade the nonlinearity. We propose a new idea and a comprehensive investigation by considering the phase mismatch condition to make AOS or XPM able to completely intact even under the influence of FWM. The experimental data demonstrated this idea. Our work makes the single-photon modulation, e.g. one photon switched or phase-modulated by another photon, not far from reality with the current scheme and advances the technology in quantum information manipulation utilizing photons.


    I Strong Interaction betweenMotionless Low-Light-Level Photon Pulses 4 1 Introduction 5 1.1 Nonlinear Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Nonlinear Optics with Electromagnetically Induced Transparency 9 2.1 Electromagnetically Induced Transparency and Slow Light . . . . . 9 2.2 Light Storage and Dark-State Polariton . . . . . . . . . . . . . . . . 12 2.3 Stationary Light Pulses in a Hot Atom System . . . . . . . . . . . . 13 2.4 Stationary Light Pulses in a Cold Atom System . . . . . . . . . . . 15 2.5 All Optical Switching . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Theoretical Prediction for Slow, Stored, and Stationary light pulses 18 3.1 Slow Light and Stored Light . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Stationary Light Pulse in a Hot Medium . . . . . . . . . . . . . . . 20 3.3 Stationary Light Pulse in a Cold Medium . . . . . . . . . . . . . . . 23 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Theoretical Prediction for All-Optical Switching 30 4.1 All Optical Switching . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Slow Light Switched by Speed-of-C Light . . . . . . . . . . . . . . . 32 4.3 Stored Light Switched by Speed-of-C Light or by Slow Light . . . . 38 4.4 Slow Light Switched by Slow Light and by Stationary Light . . . . 40 4.4.1 Double Slow Light pulses . . . . . . . . . . . . . . . . . . . . 43 4.4.2 Slow Light Plus Stationary Light . . . . . . . . . . . . . . . 44 4.5 Stored Light Switched by Stationary Light Pulse . . . . . . . . . . . 46 4.6 Phase Mismatch and Dephasing Rate . . . . . . . . . . . . . . . . . 51 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5 Experimental Setup 53 5.1 Magneto-Optical Trap and Laser System . . . . . . . . . . . . . . . 53 5.1.1 Magneto-Optical Trap . . . . . . . . . . . . . . . . . . . . . 53 5.1.2 Laser System in EIT-Based AOS . . . . . . . . . . . . . . . 55 5.2 Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3 Dark Compressed Magneto-Optical Trap . . . . . . . . . . . . . . . 58 5.4 Timing Sequence of AOS . . . . . . . . . . . . . . . . . . . . . . . . 60 6 Experimental Results 64 6.1 Slow Light Switched by Speed-of-C Light . . . . . . . . . . . . . . . 64 6.2 Stored Light Switched by Stationary Light . . . . . . . . . . . . . . 67 6.2.1 Stationary Light Pulse . . . . . . . . . . . . . . . . . . . . . 68 6.2.2 Optimized the Switching Detuning . . . . . . . . . . . . . . 68 6.2.3 Stored Light Switched by Stationary Light . . . . . . . . . . 70 6.3 Lifetime of Stationary Light pulse . . . . . . . . . . . . . . . . . . . 73 6.4 Varying the Interaction Time of Two Motionless Pulses . . . . . . . 74 7 Conclusion 76 II EIT-Based All-Optical Switching under the In uence of Four-Wave Mixing 77 8 Introduction 78 9 Theory for All-Optical Switching under the In uence of Four- Wave Mixing 81 9.1 Four-Level All-Optical Switching System . . . . . . . . . . . . . . . 81 9.1.1 FWM-Forbidden AOS . . . . . . . . . . . . . . . . . . . . . 81 9.1.2 FWM-Allowed AOS . . . . . . . . . . . . . . . . . . . . . . 82 9.2 Derive Analytic Solution . . . . . . . . . . . . . . . . . . . . . . . . 83 9.2.1 Steady-State EIT-Based AOS . . . . . . . . . . . . . . . . . 84 9.2.2 Dynamic EIT-Based AOS . . . . . . . . . . . . . . . . . . . 86 9.2.3 Compare Analytic Solution with Numerical Results . . . . . 88 9.2.4 Guideline for the FWM-Allowed AOS . . . . . . . . . . . . . 88 10 Experimental Setup 91 10.1 Optical Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 10.2 Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 11 Results 95 11.1 FWM-Forbidden AOS . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.2 FWM-Allowed AOS . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.3 Guideline for FWM-Allowed AOS . . . . . . . . . . . . . . . . . . . 98 12 Conclusion 100 13 Outlook 101

    [1] T. H. Maimen, \Stimulated Optical Radiation in Ruby," Nature 187, 493 (1960).
    [2] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, \Generation of Optical Harmonics," Phys. Rev. Lett. 7, 118 (1961).
    [3] S. E. Harris, \Electromagnetically induced transparency," Phys. Today 50, 36 (1997).
    [4] K. J. Boller, A. Imamoglu, and S. E. Harris, \Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593 (1991).
    [5] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, \Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490 (2001).
    [6] D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth,\Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86, 783 (2001).
    [7] J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, \Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid," Phys. Rev. Lett. 95, 063601 (2005).
    [8] E. Parra and J. R. Lowell, \Toward applications of slow-light technology," Opt. Photon. News 18, 41 (2007).
    [9] Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, \Low-Light-Level Cross-Phase-Modulation Based on Stored Light Pulses," Phys. Rev. Lett. 96, 043603 (2006).
    [10] M. D. Lukin, and A. Imamoglu, \Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons," Phys. Rev. Lett. 84, 1419 (2000).
    [11] Z. B. Wang, K. P. Marzlin, and B. C. Sanders, \Large Cross-Phase Modulation between Slow Copropagating Weak Pulses in 87Rb," Phys. Rev. Lett. 97, 063901 (2006).
    [12] S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, \Enhanced Cross-Phase Modulation Based on a Double Electromagnetically Induced Transparency in a Four-Level Tripod Atomic System," Phys. Rev. Lett. 101, 073602 (2008).
    [13] B. W. Shiau, M. C. Wu, C. C. Lin, and Y. C. Chen, \Low-Light-Level Cross-Phase Modulation with Double Slow Light Pulses," Phys. Rev. Lett. 106, 193006 (2011).
    [14] J. E. Field, K. H. Hahn, and S. E. Harris, \Observation of electromagnetically induced transparency in collisionally broadened lead vapor," Phys. Rev. Lett. 67, 3062(1991).
    [15] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, \Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 (1999).
    [16] M. Fleischhauer and M. D. Lukin, \Dark-State Polaritons in Electromagnetically Induced Transparency," Phys. Rev. Lett. 84, 5094 (2000).
    [17] A. V. Turukhin, V. S. Sudarhanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, \Observation of Ultraslow and Stored Light Pulses in a
    Solid," Phys. Rev. Lett. 88, 023602 (2001).
    [18] O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, \Stopping light via hot atoms," Phys. Rev. Lett. 86, 628 (2001).
    [19] A. Andre, and M. D. Lukin, \Manipulating light pulses via dynamically controlled photonic band gas," Phys. Rev. Lett. 89, 143602 (2002).
    [20] M. Bajcsy, A. S. Zibrov, and M. D. Lukin, \Stationary pulses of light in an atomic medium," Nature 426, 638 (2003).
    [21] W. T. Liao, T. Peters, E. C. Shen, and I. A. Yu, \Propagation, Broadening, and Energy Decay of Quasi-Stationary Light Pulses in Thermal Atoms," Chin. J. Phys. 47, 817 (2009).
    [22] W. T. Liao, \Theoretical Study of Stationary Light Pulses in Electromagnetically Induced Transparency Medium," Master Thesis, Department of Physics, National Tsing Hua University, Taiwan (2008).
    [23] Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan, and I. A. Yu, \Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings," Phys. Rev. Lett. 102, 213601 (2009).
    [24] J. H. Wu, M. Artoni, and G. C. La Rocca, \Stationary light pulses in cold thermal atomic clouds," Phys. Rev. A 82, 013807 (2010). & Phys. Rev. A 81, 033822 (2010).
    [25] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, \Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633 (2005).
    [26] A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, \All-Optical Switching in Rubidium Vapor," Science 308, 672 (2005).
    [27] H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, \Phase-controlled light switching at low light levels," Phys. Rev. A 73, 011802(R) (2006).
    [28] M. Yan, E. G. Rickey, and Y. Zhu, \Observation of absorptive photon switching by quantum interference," Phys. Rev. A 64, 041801(R) (2001).
    [29] D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, \Low-light-level nonlinear optics with slow light," Phys. Rev. A 68, 041801(R) (2003).
    [30] P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, \A gigahertzbandwidth atomic probe based on the slow-light Faraday e ect," Nat. Photonics 3, 225 (2009).
    [31] S. E. Harris and Y. Yamamoto, \Photon Switching by Quantum Interference," Phys. Rev. Lett. 81, 3611 (1998).
    [32] H. Schmidt, A. Imamoglu, \Giant Kerr nonlinearities obtained by electromagnetically induced transparency," Opt. Lett, 21, 1936 (1996).
    [33] S. E. Harris and L. V. Hau, \Nonlinear Optics at Low Light Levels," Phys. Rev. Lett. 82, 4611 (1999).
    [34] W. H. Lin, W. T. Liao, C. Y. Wang, Y. F. Lee, and I. A. Yu, \Low-light-level all-optical switching based on stored light pulses," Phys. Rev. A 78, 033807 (2008).
    [35] A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, \Nonlinear Optics with Stationary Pulses of Light," Phys. Rev. Lett. 94, 063902 (2005).
    [36] Y. H. Chen, M. J. Lee, W. Hung, Y. C. Chen, Y. F. Chen, and I. A. Yu, \Demonstration of the Interaction between Two Stopped Light Pulses," arXiv:1111.2110v1 [physics.optics].
    [37] M. Fleischhauer, J. Otterbach, and R. G. Unanyan, \Bose-Einstein Condensation of Stationary-Light Polaritons," Phys. Rev. Lett. 101, 163601 (2008).
    [38] M. Fleischhauer and M. D. Lukin, \Quantum memory for photons: Darkstate polaritons," Phys. Rev. A 65, 22314 (2002).
    [39] Y. F. Chen, P. C. Kuan, S. H.Wang, C. Y.Wang, and I. A. Yu, \Manipulating the retrieved frequency and polarization of stored light pulses," Opt. Lett. 31, 3511 (2006).
    [40] S. W. Su, Y. H. Chen, S. C. Gou, T. L. Horng, and I. A. Yu, \Dynamics of slow light and light storage in a Doppler-broadened electromagneticallyinduced-transparency medium: A numerical approach," Phys. Rev. A 83, 013827 (2011).
    [41] S. W. Su, Y. H. Chen, S. C. Gou, and I. A. Yu, \An e ective thermalparametrization theory for the slow-light dynamics in a Doppler-broadened electromagnetically induced transparency medium," J. Phys. B: At. Mol. Opt. Phys. 44, 165504 (2011).
    [42] J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, (Adam Hilger, Bristol and Philadelphia 1989).
    [43] Y. F. Chen, Z. H. Tsai, Y. C. Liu, and I. A. Yu, \Low-light-level photon switching by quantum interference," Opt. Lett. 30, 3207 (2005).
    [44] T. Peters, Y. C. Chen, J. S. Wang, Y. W. Lin, and I. A. Yu, \Optimizing the retrieval eciency of stored light pulses," Opt. Express 17, 6665 (2009).
    [45] Y. W. Lin, H. C. Chou, P. P. Dwivedi, Y. C. Chen, and I. A. Yu, \Using a pair of rectangular coils in the MOT for the production of cold atom clouds
    with large optical density," Opt. Express 16, 3753 (2008).
    [46] H. C. Chou, \Experimental Study of Stationary Light Pulses," Master Thesis, Department of Physics, National Tsing Hua University, Taiwan (2008).
    [47] W. Ketterle, K. B. Davis, M. A. Jo e, A. Martin, and D. E. Pritchard, \High densities of cold atoms in a dark spontaneous-force optical trap," Phys. Rev. Lett. 70, 2253 (1993).
    [48] M. T. DePue, S. L. Winoto, D. J. Han, and D. S. Weiss, \Transient compression of a MOT and high intensity
    uorescent imaging of optically thick
    clouds of atoms," Opt. Commun. 200, 73(2000)
    [49] S. L. Winoto, M. T. DePue, N. E. Bramall, and D. S. Weiss, \Laser cooling at high density in deep far-detuned optical lattices," Phys. Rev. A 59 R19 (1999).
    [50] J. Zhang, G. Hernandez, and Y. Zhu, \All-optical switching at ultralow light levels," Opt. Lett. 32, 1317 (2007).
    [51] I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petro , J. Vuckovic, \Controlled Phase Shifts with a Single Quantum Dot," Science 320, 769 (2008).
    [52] N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and K. Edamatsu, \Observation of optical- bre Kerr nonlinearity at the single-photon level," Nature Photon. 3, 95 (2009).
    [53] D. E. Chang, A. S. Srensen, E. A. Demler, and M. D. Lukin, \A singlephoton transistor using nanoscale surface plasmons," Nature Physics. 3, 807 (2007).
    [54] D. A. Braje, V. Balic, S. Goda, G. Y. Yin, and S. E. Harris, \Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms," Phys. Rev. Lett. 93, 183601 (2004).
    [55] H. Y. Lo, Y. C. Chen, P. C. Su, H. C. Chen, J. X. Chen, Y. C. Chen, I. A. Yu, and Y. F. Chen, \Electromagnetically-induced-transparency-based crossphase-modulation at attojoule levels," Phys. Rev. A 83, 041804(R) (2011).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE