研究生: |
陳彥博 Yen-Bo Chen |
---|---|
論文名稱: |
具切換式整流器前級數位控制模組化變頻器之開發 DEVELOPMENT OF DIGITAL CONTROLLED MODULAR INVERTERS WITH SWITCHING MODE RECTIFER FRONT-END |
指導教授: |
廖聰明
Chang-Ming Liaw |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 161 |
中文關鍵詞: | 變頻器 、單相 、三相 、數位控制 、數位信號處理器 、波形控制 、強健控制 、變壓器激磁不平衡 、切換式整流器 、Delta-接 、V-接 、Scott-T 接 |
外文關鍵詞: | Inverter, single-phase, three-phase, digital control, DSP, waveform control, robust control, transformer flux imbalance, switch-mode rectifier, Delta-connected, Y-connected, V-connected, Scott-T connected |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研製切換式整流器供電之模組化數位變頻器及從事其控制。在探究瞭解一些既有切換式整流器之比較特性後,設計製作一簡易三相單開關切換式整流器,以為變頻器前端交流/直流轉換器。藉由妥善之控制器設計,使其建立之直流鏈電壓為可調升及具良好調節特性。結果顯示所建之變頻器具良好之輸出電壓波形追控以及良好之交流入電電力品質。
在模組化數位變頻器開發方面,先建構以數位信號處理器為主之高性能單相變頻器。所提之電流及電壓波形控制機構含迴授控制器、命令前向控制器及簡易之強健擾動消去控制器。更進一步,本論文提出一強健補償控制機構,以降低由變壓器不平衡激磁所生之非線性效應。
接著,本文研製由二個或三個單相變頻器模組接成之三相變頻器,含 -接、Y-接、V-接、Scott-T接等。在具良好波形追控之變頻器下,本文亦研究其任意規劃波形追控性能。實測結果顯示在未知及變動之負載下,所研製之單相及三相變頻器具有良好及強健之輸出波形追控特性。另外,本文亦從事在傳統整流器以及切換式整流器供電下變頻器之操作性能比較評估。
關鍵詞:變頻器、單相、三相、數位控制、數位信號處理器、波形控制、強健控制、變壓器激磁不平衡、切換式整流器、 Delta-接、Y-接、V-接、Scott-T 接。
The major purposes of this thesis lie in the development of switch-mode rectifier (SMR) fed modular digital inverters and making their controls. After exploring the comparative features of some existing SMRs, a simple three-phase single-switch SMR is designed and employed as an AC/DC front-end converter for the followed inverters. And the suitable control scheme is developed to establish the boostable and well-regulated DC-link voltage. It follows that the inverter output performance is improved with line drawn power quality are obtained.
As to the development of modular digital inverters, the design and implementation of high performance digital signal processor (DSP) based single-phase inverter module are first made. The proposed sophisticated current and voltage waveform control schemes consist of feedback, command feedforward and simple robust disturbance cancellation controls. Moreover, a simple robust compensation control approach is proposed to reduce the nonlinear effects caused by transformer flux imbalance.
With the developed single-phase inverter module, the establishment of three-phase inverters using two or three modules is studied. The studied three-phase inverters include Y-, -, V- and Scott-T connected inverters. Finally, after establishing the inverters having good waveform tracking characteristics, the arbitrary waveform tracking control is studied. Some measured results show that the designed inverters possess good and robust waveform tracking performance under unknown and varying loads, and they also possess good programmable waveform tracking capability. Moreover, some comparative performance evaluations of the inverters fed by the conventional rectifier and the developed SMR are made.
Key words: Inverter, single-phase, three-phase, digital control, DSP, waveform control, robust control, transformer flux imbalance, switch-mode rectifier, Delta-connected, Y-connected, V-connected, Scott-T connected.
A. Basics of inverters
[1] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, New York: Pergamon Press, 1988.
[2] D. W. Hart, Introduction to Power Electronics, New Jersey: Prentice-Hall, 1997.
[3] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2002.
[4] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
[5] D. G. Holmes and T. A. Lipo, Pulse Width Modulation For Power Converters: Principles and Practice, IEEE Press, 2003.
[6] H. Deng, R. Oruganti, and D. Srinivasan, “Modeling and control of single-phase UPS inverter: A survey,” in Proc. PEDS, 2005, pp. 848-853.
[7] J. G. Garcia, J. Cardesin, J. Ribas, A. J. Calleja, M R. Secades, J. M. Alonso and E. L. Corominas, “Minimization of acoustic resonances in HID lamps: analysis and comparison of power harmonics content in high frequency non-resonant inverters,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1467-1479, 2005.
[8] T. H. Chen and C. M. Liaw, “Soft-switching inverter for electrodynamic shaker,” IEE Proceedings, Electric Power Applications, Vol. 146, No. 5, pp. 515-523, 1999.
[9] P. J. M. Heskes and J. H. R. Enslin, “Power quality behavior of different photovoltaic inverter topologies,” Power Conversion Intelligent Motion (PCIM) International conference, 2003.
[10] Y. Haung, J. Wang, F. Z. Peng, and D. Yoo, “Survey of the power conditioning system for PV power generation,” in Proc. PESC, 2006, pp. 1-6.
B. Switching controls
[11] J. Holtz, “Pulsewidth modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, pp. 410-420, 1992.
[12] H. Dehbonei, L. Borle and C. V. Nayar, “A review and a proposal for optimal harmonic mitigation in single-phase pulse width modulation,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, pp. 408-414, 2001.
[13] D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Trans. Circuits Syst. I, vol. 49, no. 4, pp. 465-475, 2002.
[14] M. Prodanovic, T. C. Green and H. Mansir, “A survey of control methods for three-phase inverters in parallel connection,” IEE International Conference on Power Electronics and Variable Speed Drives, no. 475, pp. 472-477, 2000.
[15] Y. Xing, L. P. Huang and Y. G. Yan, “A decoupling control method for inverters in parallel operation,” IEEE International Conference on Power System Technology, vol. 2, pp. 1025-1028, 2002.
[16] N. Abdel-Rahim and J. E. Quaicoe, “Three-phase voltage-source UPS inverter with voltage-controlled current-regulated feedback control scheme,” IEEE International Conference on Industrial Electronics, Control and Instrumentation, vol.1, pp.479-
502, 1994.
[17] T. Senjyu, H. Kamifurutono and K. Uezato, “Robust current control method with disturbance voltage observer for voltage source PWM inverter,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, pp. 379-384, 1995.
[18] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: A survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[19] T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Trans. Mechatron., vol. 4, no. 1, pp. 60–70, 1999.
[20] G. Alarcon, V. Cardenas, S. Ramirez, N. Visairo, C. Nunez, M. Oliver and H. Sira-Ramirez, “Nonlinear passive control with inductor current feedback for an UPS inverter,” IEEE Conference on Power Electronics Specialists, vol. 3, pp. 1414-1418, 2000.
[21] P. A. Dahono and I. Krisbiantoro, “A hysteresis current controller for single-phase full-bridge inverters,” IEEE International Conference on Power Electronics and Drive Systems, vol. 1, pp. 415-419, 2001.
[22] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proceedings on Electric Power Applications, vol. 148, no. 6, pp. 503-512, 2001.
[23] K. Meghriche, O. Mansouri, and A. Cherifi, “Microcontroller-based single phase inverter using a new switching strategy,” in Proc. IPEMC, 2006, pp. 1-6.
[24] K. M. Cho, W. S. Oh, Y. T. Kim, and H. J. Kim, “A new switching strategy for pulse width modulation (PWM) power converters,” IEEE Trans. Ind. Electron., vol. 54, pp. 330-337, Feb. 2007.
[25] V. Blasko, “A novel method for selective harmonic elimination in power electronic equipment,” IEEE Trans. Power Electron., vol. 22, pp. 223-228, Jan. 2007.
[26] S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, pp. 1547-1559, June 2007.
C. Dead time compensation
[27] D. Leggate and R. J. Kerkman, “Pulse-based dead-time compensator for PWM voltage inverters,” IEEE Trans. Ind. Electron., vol. 44, pp. 191-197, 1997.
[28] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
[29] X. Yu, M. W. Dunnigan and B. W. Williams, “Phase voltage estimation of a PWM VSI and its application to vector-controlled induction machine parameter estimation,” IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 1181-1184, 2000.
[30] A. C. Oliveira, A. M. N. Lima and C. B. Jacobina, “Varying the switching frequency to compensate the dead-time in pulse width modulated voltage source inverters,” IEEE Conference on Power Electronics, vol. 1, no. 2, pp. 244-249, 2001.
[31] C. Attaianese, D. Capraro and G. Tomasso, “A low cost digital SVM modulator with dead time compensation,” IEEE Conference on Power Electronics, vol. 1, no. 4, pp. 158-163, 2001.
[32] A. Cichowski and J. Nieznanski, “Self-tuning dead-time compensation method for voltage-source inverters,” IEEE Power Electronics Letters, vol. 3, no. 2, pp.72- 75, 2005.
[33] J. L. Lin, “A new approach of dead-time compensation for PWM voltage inverters,” IEEE Trans. Circuits Syst., vol. 49, no. 4, pp. 476-483, 2002.
[34] H. S. Kim, H. T. Moon and M. J. Youn, “On-line dead-time compensation method using disturbance observer,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1336-1345, 2003.
D. Filter design and transformer imbalance compensation
[35] J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” IEE Conference on Power Electronics and Applications, vol. 4, pp. 65-70, 1993.
[36] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993.
[37] F. Blaabjerg, D. O. Neacsu, and J. K. Pedersen, “Adaptive SVM to compensate DC-link voltage ripple for four-switch three-phase voltage-source inverters,” IEEE Trans. Power Electron., vol. 14, pp. 743-752, July 1999.
[38] M. Chomat and L. Schreier, “Control method for DC-link voltage ripple cancellation in voltage source inverter under unbalanced three-phase voltage supply conditions,” in Proc. IEMDC, 2003, pp. 869-875.
[39] P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” IEEE International Conference on Power Electronics and Drive Systems, vol. 2, pp. 571-576, 1995.
[40] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” International Conference on Power System Technology, vol. 3, pp. 1659-1664, 2000.
[41] J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in sinusoidal wave inverter,” IEEE International Conference on Power Electronics and Motion Control, vol. 3, pp. 1122-1126, 2000.
[42] M. Li and Y. Xing, “Digital voltage regulation with flux balance control for sine wave inverters,” IEEE Conference and Exposition on Applied Power Electronics, vol. 3, pp. 1709-1713, 2004.
[43] A. Okwi, S. Kaga and H. lkeda, “Control method of PWM inverter for driving LSM to reduce the burden of output transformer,” IEEE Conference on Power Electronics Specialists, vol. 1, pp. 571-577, 1998.
E. Dynamic Control
[44] C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” 2001 IEEE 32nd Annual Power Electronics Specialists Conference, vol. 2, pp. 17-21, June 2001.
[45] M. J. Ryan, W. E. Brumsickle and R. D. Lorenz, “Control topology options for single-phase UPS inverters,” IEEE Trans. Ind. Applicat., vol. 33, no. 2, pp. 493-501, 1997.
[46] T. H. Chen and C. M. Laiw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Transactions on Mechatronics, vol. 4, No. 1, pp. 60-70, 1999.
[47] O. Kukrer, H. Komurcugil, and N. S. Bayindir, “Control strategy for single-phase UPS inverters,” IEE Proceedings Electric Power Applications, vol. 150, no. 6, pp. 743-746, 2003.
[48] S. Vukosavic, L. Peric, E. Levi, and V. Vuckovic, “Reduction of the output impedance of PWM inverters for uninterruptible power supply,” Power Electronics Specialists Conference, pp. 757-762, 1990.
[49] C. M. Liaw, Y. M. Lin and K. H. Chao, “A VSS speed controller with model reference response for induction motor drive,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1136-1147, 2001.
[50] X. Sun, M. H. Chow, F. H. F. Leung, D. Xu, Y. Wang, and Y. S. Lee, “Analogue implementation of a neural network controller for UPS inverter applications,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 305-313, 2002.
[51] K. S. Low, “A DSP-based variable AC power source,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 936-941, 1999.
[52] E. G. Garati, H. Pinheiro, J. R. Pinheiro, H. L. Hey, and H. A. Grundling, “Adaptive robust DSP-based single phase AC power source,” The Proceedings of the 2001 IEEE International Conference on Control Applications, 5-7 Sept., 2001, pp. 24-28.
[53] C. M. Liaw, W. C. Yu and T. H. Chen, “Random vibration test control of inverter-fed electrodynamic shaker,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 587-594, 2002.
[54] C. M. Richter, E. G. Carati, H. Pinheiro, H. L. Hey, J. R. Pinheiro and H. A. Grundling, “A three-phase AC power source using multivariable repetitive robust model reference adaptive control,” IEEE Conference on American Control, vol. 3, pp. 2300-2305, 2003.
[55] G. Willmann, D. F. Coutinho and L. F. A. Pereira, “A robust discrete-time controller for DC-AC inverters,” IEEE Conference on Industrial Electronics, pp. 213-218, 2005.
[56] H. Van der Broeck, P. Lurkens, “Programmable AC power source,” Fifth European Conference on Power Electronics and Applications, vol. 3, 13-16 Sept., 1993, pp. 255-260.
F. Switch-mode rectifiers
[57] K. Taniguchi and A. Okumura, “A PAM inverter system for vector control of induction motor,” IEEE Power Conversion Conference, pp. 478-483, 1993.
[58] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “ A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[59] Mao Hengchun, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuit,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-46, 1997.
[60] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[61] Y. Jang and M. M. Jovanovi’c, “A comparative study of single-switch three-phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, 1998.
[62] J. Shah and G. Moschopoulos, “A new three-phase single-switch rectifier with stepped down output voltage near unity power factor and extended operating range,” Telecommunications Energy Conference, 2004. INTELEC 2004. 26th Annual International, pp. 462-467, 2004.
[63] J. W. Kolar, H. Etrl, and F. C. Zach, “A comprehensive design approach for a three-phase high-frequency single-switch discontinuous-mode boost power factor correct based on analytically derived normalized converter component rating,” IEEE Trans. Ind. Appl., vol. 31, no. 3, pp. 569-582, 1995.
[64] H. S. Athab, S. M. Bashi, N. Mariun and S. B. Mohd. Noor, “Harmonic reduction in a boost-star three-phase single switch power factor correction circuit operating in discontinuous conduction mode,” Research and Development, 2003. SCORED 2003. Proceedings. Student Conference, pp. 218-223, 2003.
[65] D. Tokushima, H. Ishikawa, D. Wang and H. Naitoh, “Soft switched three-phase single switch boost-type rectifier,” Power Conversion Conference, 2002. PCC Osaka 2002. Proceedings, vol. 2, pp. 492-497, 2002.
[66] C. Kun, X. Zhenlin, “A novel control method of three-phase single-switch boost power factor corrector under variable switching frequency,” Power System Technology, 2002. Proceedings. PowerCon 2002. International Conference on, vol.1, pp. 565-569, 2002.
[67] A.R. Prasad, P.D. Ziogas and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Trans. Power Electron., vol. 6, pp. 83-92, 1991.
[68] D. S. L. Simonetti, J. Sebastian and J. Uceda, “Single-switch three-phase power factor preregulator under variable switching frequency and discontinuous input current,” in Proc. IEEE PESC Conf. Rec., pp. 657-662, 1993.
[69] J. Yungtaek and M. M. Jovanovic, “A comparative study of single-switch three-phase high-power-factor rectifiers,” IEEE Trans. Ind. Applicat., vol. 34, pp.1327-1334, 1998.
G. Modular connected three phase inverters
[70] B. H. Li, S. S. Choi and D. M. Vilathgamuwa, “Transformerless dynamic voltage restorer,” IEE Proceedings-Generation on Transmission and Distribution, vol. 149, no. 3, pp. 263-273, 2002.
[71] F. V. P. Robinson, “The interleaved operation of power amplifiers,” IEE International Conference on Power Electronics and Variable Speed Drives, vol. 456, pp. 606-611, 1998.
[72] F. Ueda, K. Matsui, M. Asao and K. Tsuboi, “Parallel-connections of pulsewidth modulated inverters using current sharing reactors,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 673-679, 1995.
[73] R. J. Kakalec, “A comparison of three phase Scott-T and ferroresonant transformers,” IEEE Conference on Electrical Electronics Insulation, pp. 619-623, 1995.
[74] N. P. Schibli, T. Nguyen and A. C. Rufer, “A three-phase multilevel converter for high-power induction motors,” IEEE Trans. Power Electron., vol. 13, no.5, pp. 978-986, 1998.
[75] Z. Qianzhi, Z. Kai and W. Jugui, “A novel single-three phase inverter adopting CTA scheme,” IEEE Conference on Power Electronics and Motion Control, vol. 2, pp. 980-984, 2000.
H. Distributed power systems and modular connection of inverter
[76] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004
[77] J. Rodriguez, J. S. Lai and F. Z. Peng, “Multilevel Inverters: A survey of Topologies, Controls, and Applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp.724-738, August 2002.
[78] S. Mariethoz and A. Rufer, “New configurations for the three-phase asymmetrical multilevel inverter,” IEEE Conference on Industry Applications, vol. 2, pp. 828-835, 2004.
[79] R. Teodorescu, F. Blaabjerg, J. K. Pedersen, E. Cengelci and P. N. Enjeti, “Multilevel inverter by cascading industrial VSI,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 832-838, 2002.
[80] M. Hashad and J. Iwaszkiewicz, “A novel orthogonal-vectors-based topology of multilevel inverter by cascading industrial VSI,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 832-838, 2002.
[81] E. Cengelci, P. Enjeti, C. Singh, F. Blaabjerg and J. K. Pederson, “New medium voltage PWM inverter topologies for adjustable speed AC motor drive systems,” IEEE Conference and Exposition on Applied Power Electronics, vol. 2, pp. 565-571, 1998.
[82] C. Rech, H. A. Grundling, H. L. Hey, H. Pinheiro and J. R. Pinheiro, “A generalized design methodology for hybrid multilevel inverters,” IEEE Conference on Industrial Electronics, vol. 1, pp. 834-839, 2002.
[83] K. Sheldon, “Connecting multiple Sunny Boy Inverters to a three phase utility,” Technical Note, SMA American, Incorporated Copyright, rev. 1.6, 2002.
[84] J. Rodríguez, J. S. Lai and F Z Peng, “Multilevel Inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, 2002.
[85] Kansuke Fujii, Ulrich Schwarzer, and Rik W. De Doncker, “Comparsion of Hard-switched multi-level inverter topologies for STATCOM by Loss-Implemented Simulation and Cost Estimation,” IEEE Conference on Power Electronics, pp. 340-346, 2005.
[86] L. Ben-Brahim and S. Tadakuma, “A Novel Multilevel Carrier-Based PWM-Control Method for GTO Inverter in Low Index Modulation Region,” IEEE Trans. Ind. Appl. vol. 42, no. 1, pp. 121-127, 2006.
[87] D. Stanciu and C. N. Popescu, “PWM three-level inverter control,” in Proc. IEEE Automation, Quality and Testing, Robotics, 2006, pp. 243-247.
I. Digital control
[88] F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, Prentice Hall PTR, New Jersey, 1999.
[89] F. L. Luo, H. Ye and M. H. Rashid, Digital Power Electronics and Applications, Academic Press Inc, London Ltd, 2005.
[90] K. Ogata, “Discrete-Time Control Systems,” Prentice-Hall, New Jersey, 1995.
[91] “Single-Chip DSP-Based High Performance Motor Controller ADMC 401,” Analog Devices Inc., 2000.
[92] ‘‘Implementing PI controllers with the ADMC401,’’ Application Note AN401-13,
Analog Devices Inc., 2000.
J. IEEE standard
[93] P. Kulkarni, “Assesion power quality impacts and solutions for the California food processing industry,” EPRI, California, Tech, Rep, 100-98-001, EPRI Project #37, 2005.