研究生: |
陳安佳 Chen, An-Jia |
---|---|
論文名稱: |
利用離子鍍膜系統製備氮化鈦薄膜鍍著於Ti-6Al-4V基板附著度之研究 Study on the Adhesion of TiN Thin Films on Ti-6Al-4V Substrate Deposited by Ion-Plating System |
指導教授: |
藍貫哲
Lan, Kuan-Che |
口試委員: |
黃嘉宏
Huang, Jia-Hong 李志偉 Lee, Jyh-Wei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 112 |
中文關鍵詞: | 氮化鈦 、鈦六鋁四釩 、離子鍍膜系統 、附著度 、刮痕測試 |
外文關鍵詞: | titanium nitride(TiN), hollow cathode deposition ion-plating (HCD-IP) system |
相關次數: | 點閱:40 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究目的是探討影響氮化鈦薄膜於鈦合金Ti-6Al-4V的附著度之因素。第一部份,利用中空陰極離子鍍著(HCD-IP)系統於低功率下將氮化鈦薄膜鍍著於矽基材上,研究在低功率下,三種鍍膜參數對樣品性質的影響,調整的參數有基板偏壓、鍍膜功率及工作壓力,並比較各樣品的厚度、粗糙度、電阻率、硬度及殘餘壓應力與不同鍍膜參數之間的關係。結果顯示,當基板偏壓提升至-90V時,薄膜的硬度及殘餘壓應力提升;當鍍膜功率由2.2提升至2.4 kW時,膜厚增加了將近一倍,由於所有樣品的鍍膜時間皆為35分鐘,說明了膜厚的增加主要來自功率的貢獻,而當功率由2.4提升至2.6 kW時,雖然膜厚的增加程度變為趨緩,只增加約200 nm,但整體而言,膜厚與功率仍呈正向趨勢,特別的是,較高的鍍膜速率並沒有降低薄膜之品質,由殘餘應力及硬度的數值可看出薄膜仍有良好的抵禦外力之能力;在功率為2.2 kW的情況下將工作壓力由3提升至4 mTorr,發現膜厚減少,表示可能有re-sputtering的現象,進而使鍍率下降。第二部份為利用HCD-IP於低功率下將氮化鈦薄膜鍍著於鈦合金Ti-6Al-4V上,欲探討影響氮化鈦薄膜於Ti-6Al-4V上的刮痕結果的主要因素。藉由調整各樣參數,比較鍍膜參數及臨界應力的關係,最終結果顯示使用基板偏壓-60V、鍍膜功率2.4 kW及工作壓力3 mTorr製備之厚度為1.4 μm的TiN,其刮痕結果中的臨界應力(LC3),平均可高達約42 N,與其他文獻相比,此結果表明了單層TiN與Ti-6Al-4V具有良好的附著度。然而,沒有任何一項數值(楊氏係數、殘餘應力、儲存能等)和LC3有高相關性,考量刮痕測試中,整個過程是使用鑽石針對薄膜施加應力並刮除薄膜,進而獲得刮除薄膜所需施加的最大應力(LC3),因此本研究將LC3除以氮化鈦薄膜厚度,獲得移除1nm之氮化鈦薄膜所需施加之應力(LC3’),再與楊氏係數、殘餘應力及儲存能比較,發現LC3’與這三樣數據的高相關性,此相關性可用於預測刮痕測試的結果,而不用破壞試片。
The purpose of this study is to explore the factors affecting the adhesion of titanium nitride films to titanium alloy Ti-6Al-4V. In the first part, the hollow cathode ion plating (HCD-IP) system is used to deposit titanium nitride thin films on silicon substrates at low power, and the effects of three coating parameters on the sample properties at low power are studied. The adjusted parameters include substrate bias, coating power and working pressure, and the relationship between the thickness, roughness, resistivity, hardness and residual compressive stress of each sample and different coating parameters is compared. The results show that when the substrate bias voltage is increased to -90V, the hardness and residual compressive stress of the film increase; when the coating power is increased from 2.2 to 2.4 kW, the film thickness nearly doubles, because the coating time of all samples is 35 minutes, indicating that the increase in film thickness mainly comes from the contribution of power. When the power is increased from 2.4 to 2.6 kW, although the increase in film thickness slows down and only increases by about 200 nm, overall, the film thickness and power still show a positive trend. In particular, the higher coating rate does not make the film less dense. The values of residual stress and hardness show that the film still has good quality; when the working pressure was increased from 3 to 4 mTorr at a power of 2.2 kW, it was found that the film thickness decreased, indicating that there may be re-sputtering, which in turn caused the deposition rate to decrease. The second part is to use HCD-IP to deposit titanium nitride film on titanium alloy Ti-6Al-4V under low gun power. It is intended to explore the main factors that affect the scratch results of titanium nitride film on Ti-6Al-4V. By adjusting various parameters and comparing the relationship between coating parameters and critical load (LC3), it’s found that the critical load (LC3) of titanium nitride film can be as high as about 42 N on average with using a substrate bias voltage of -60V, a gun power of 2.4 kW and a working pressure of 3 mTorr. Compared with other literature, this result shows that the single layer of titanium nitride has good adhesion to Ti-6Al-4V. However, none of the values (Young's modulus, compressive residual stress, stored energy, etc.) has a high correlation with LC3. Considering the scratch test, the entire process is to use diamond needle to apply load to the film and scrape off the film, thereby obtaining the maximum load (LC3) as the film removed completely. In this study, the LC3 is divided by the thickness of the titanium nitride film to obtain the stress that needs to be applied to remove a 1nm titanium nitride film (LC3’). Comparing LC3’ with Young's modulus, compressive residual stress and storage energy, it revealed a high correlation between LC3’ and these three values, which can use to predict the scratch result without doing destructive testing.
[1] L. S. Morais, G. G. Serra, C. A. Muller, L. R. Andrade, E. F. A. Palermo, C. N. Elias and M. Meyers, “Titanium Alloy Mini-Implants for Orthodontic Anchorage: Immediate Loading and Metal Ion Release,” Acta Biomater, 3 (2007) 331–339.
[2] C. Liu, Q. Bi and A. Matthews, “Tribological and Electrochemical Performance of PVD TiN Coatings the Femoral Head of Ti-6Al-4V Artificial Hip Joints,” Surf Coat Technol, 163–164 (2003) 597–604.
[3] L. Qin, H. Yi, F. Kong, H. Ma, L. Guo, L. Tian and B. Tang, “Effect of Plasma Molybdenized Buffer Layer on Adhesive Properties of TiN Film Coated on Ti-6Al-4V Alloy,” Appl Surf Sci, 403 (2017) 464–471.
[4] C. Veiga, J. P. Davim and A. J. R. Loureiro, “Properties and Applications of Titanium Alloys: a Brief Review,” Reviews on Advanced Materials Science, 32 (2012) 14–34.
[5] W.-J. Chou, G.-P. Yu and J.-H. Huang, “Mechanical Properties of TiN Thin Film Coatings on 304 Stainless Steel Substrates,” Surf Coat Technol, 149 (2002) 7–13.
[6] F. Lang and Z. Yu, “The Corrosion Resistance and Wear Resistance of Thick TiN Coatings Deposited by Arc Ion Plating,” Surf Coat Technol, 145 (2001) 80–87.
[7] W.-J. Chou, G.-P. Yu and J.-H. Huang, “Corrosion Behavior of TiN-Coated 304 Stainless Steel,” Corros Sci, 43 (2001) 2023–2035.
[8] W.-J. Chou, G.-P. Yu and J.-H. Huang, “Effect of Heat Treatment on the Structure and Properties of Ion-Plated TiN Films,” Surf Coat Technol, 168 (2003) 43–50.
[9] B. O. Johansson, J.-E. Sundgren, J. E. Greene, A. Rockett and S. A. Barnett, “Growth and Properties of Single Crystal TiN Films Deposited by Reactive Magnetron Sputtering,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 3 (1985) 303–307.
[10] Louis Toth, Transition Metal Carbides and Nitrides, Elsevier, 2014.
[11] S. Nagakura, T. Kusunoki, F. Kakimoto and Y. Hirotsu, “Lattice Parameter of the Non-stoichiometric Compound TiNx,” J Appl Crystallogr, 8 (1975) 65–66.
[12] V. Valvoda, “Structure of Thin Films of Titanium Nitride,” J Alloys Compd, 219 (1995) 83–87.
[13] W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev and A. V. Kildishev, “Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber,” Advanced Materials, 26 (2014) 7959–7965.
[14] L. Zhang, H. Yang, X. Pang, K. Gao and A. A. Volinsky, “Microstructure, Residual Stress, and Fracture of Sputtered TiN Films,” Surf Coat Technol, 224 (2013) 120–125.
[15] J. A. Sue, “X-Ray Elastic Constants and Residual Stress of Textured Titanium Nitride Coating,” Surf Coat Technol, 54–55 (1992) 154–159.
[16] William D. Callister Jr. and David G. Rethwisch, Materials Science and Engineering: An Introduction, 8th ed., Wiley, 2009.
[17] W. Ensinger, A. Schröer and G. X. Wolf, “A Comparison of IBAD Films for Wear and Corrosion Protection with Other PVD Coatings,” Nucl Instrum Methods Phys Res B, 80–81 (1993) 445–454.
[18] J. Qi, Y. Yang, M. Zhou, Z. Chen and K. Chen, “Effect of Transition Layer on the Performance of Hydroxyapatite/Titanium Nitride Coating Developed on Ti-6Al-4V Alloy by Magnetron Sputtering,” Ceram Int, 45 (2019) 4863–4869.
[19] V. M. C. A. Oliveira, C. Aguiar, A. M. Vazquez, A. Robin and M. J. R. Barboza, “Improving Corrosion Resistance of Ti-6Al-4V Alloy through Plasma-Assisted PVD Deposited Nitride Coatings,” Corros Sci, 88 (2014) 317–327.
[20] E. J. Herrera-Jimenez, E. Bousser, T. Schmitt, J. E. Klemberg-Sapieha and L. Martinu, “Effect of Plasma Interface Treatment on the Microstructure, Residual Stress Profile, and Mechanical Properties of PVD TiN Coatings on Ti-6Al-4V Substrates,” Surf Coat Technol, 413 (2021) 1–13.
[21] E. J. Herrera-Jimenez, N. Vanderesse, E. Bousser, T. Schmitt, P. Bocher, L. Martinu and J. E. Klemberg-Sapieha, “Fracture Mechanism of TiN Coatings on Ti-6Al-4V Substrates: Role of Interfaces and of the Residual Stress Depth Profile,” Surf Coat Technol, 426 (2021) 1–12.
[22] A. Baptista, F. Silva, J. Porteiro, J. Míguez and G. Pinto, “Sputtering Physical Vapour Deposition (PVD) Coatings: a Critical Review on Process Improvement and Market Trend Demands,” Coatings, 8 (2018) 402–424.
[23] A. Claver, J. J. Randulfe, J. F. Palacio, J. F. de Ara, E. Almandoz, F. Montalá, C. Colominas, V. Cot and J. A. García, “Improved Adhesion and Tribological Properties of AlTiN-TiSiN Coatings Deposited by DCMS and HiPIMS on Nitrided Tool Steels,” Coatings, 11 (2021) 1175–1196.
[24] G. G. Stoney, “The Tension of Metallic Films Deposited by Electrolysis,” in Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 82, 1909, 172–175.
[25] C. A. Klein, “How Accurate Are Stoney’s Equation and Recent Modifications,” J Appl Phys, 88 (2000) 5487–5489.
[26] V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation - Application - Assessment, Elsevier, 1997.
[27] A. N. Wang, J. H. Huang, H. W. Hsiao, G. P. Yu and H. Chen, “Residual Stress Measurement on TiN Thin Films by Combing Nanoindentation and Average X-Ray Strain (AXS) Method,” Surf Coat Technol, 280 (2015) 43–49.
[28] A. N. Wang, C. P. Chuang, G. P. Yu and J. H. Huang, “Determination of Average X-Ray Strain (AXS) on TiN Hard Coatings Using cos2αsin2ψ X-Ray Diffraction Method,” Surf Coat Technol, 262 (2015) 40–47.
[29] “Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing,” in ASTM Standards, C1624-22nd ed., 2011.
[30] K. S. Selivanov, A. M. Smyslov, Y. M. Dyblenko and I. P. Semenova, “Erosive Wear Behavior of Ti/Ti(V,Zr)N Multilayered PVD Coatings for Ti-6Al-4V Alloy,” Wear, 418–419 (2019) 160–166.
[31] L. Sheng, Y. Xiao, C. Jiao, B. Du, Y. Li, Z. Wu and L. Shao, “Influence of Layer Number on Microstructure, Mechanical Properties and Wear Behavior of the TiN/Ti Multilayer Coatings Fabricated by High-Power Magnetron Sputtering Deposition,” J Manuf Process, 70 (2021) 529–542.
[32] G. Cassar, S. Banfield, J. C. A. B. Wilson, J. Housden, A. Matthews and A. Leyland, “Tribological Properties of Duplex Plasma Oxidised, Nitrided and PVD Coated Ti-6Al-4V,” Surf Coat Technol, 206 (2011) 395–404.
[33] X. Zhao, H. Zhang, H. Liu, S. Li, W. Li and X. Wang, “In Vitro Bio-Tribological Behaviour of Textured Nitride Coating on Selective Laser Melted Ti-6Al-4V Alloy,” Surf Coat Technol, 409 (2021) 1–12.
[34] F. Sun, X. L. Liu, S. Q. Luo, D. D. Xiang, D. C. Ba, Z. Lin and G. Q. Song, “Duplex Treatment of Arc Plasma Nitriding and PVD TiN Coating Applied to Dental Implant Screws,” Surf Coat Technol, 439 (2022) 1–10.
[35] D. A. Shirley, “High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold,” Phys Rev B, 5 (1972) 4709–4714.
[36] D. Jaeger and J. Patscheider, “A Complete and Self-Consistent Evaluation of XPS Spectra of TiN,” J Electron Spectros Relat Phenomena, 185 (2012) 523–534.
[37] J. F. Marco, A. C. Agudelo, J. R. Gancedo1 and D. Hanz-El2, “Corrosion Resistance of Single TiN Layers, Ti/TiN Bilayers and Ti/TiN/Ti/TiN Multilayers on Iron Under a Salt Fog Spray (Phohesion) Test: an Evaluation by XPS,” Surf. Interface Anal, 27 (1999) 71–75.
[38] N. C. Saha and H. G. Tompkins, “Titanium Nitride Oxidation Chemistry: an X-Ray Photoelectron Spectroscopy Study,” J Appl Phys, 72 (1992) 3072–3079.
[39] P. Scherrer, “Bestimmung der Grösse und der innern Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Gött. Nachr., 2 (1918) 98–100.
[40] L. V. Azaroff and M. J. Buerger, “The Powder Method in X-Ray Crystallography,” J Electrochem Soc, 106 (1959) 15–16.
[41] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J Mater Res, 7 (1992) 1564–1583.
[42] C.-H. Ma, J.-H. Huang and H. Chen, “Residual Stress Measurement in Textured Thin Film by Grazing-Incidence X-Ray Diffraction,” Thin Solid Films, 418 (2002) 73–78.
[43] F. R. Kaschel, R. K. Vijayaraghavan, A. Shmeliov, E. K. McCarthy, M. Canavan, P. J. McNally, D. P. Dowling, V. Nicolosi and M. Celikin, “Mechanism of Stress Relaxation and Phase Transformation in Additively Manufactured Ti-6Al-4V via in Situ High Temperature XRD and TEM Analyses,” Acta Mater, 188 (2020) 720–732.