簡易檢索 / 詳目顯示

研究生: 王伯約
Wang, Po-Yueh
論文名稱: 用於生醫感測之陣列式電晶體溫度感測器
CMOS Temperature Sensor Arrays for Biosensing Applications
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 74
中文關鍵詞: CMOS溫度感測陣列數位介面紅外線飽和區
外文關鍵詞: CMOS process, saturation region, thermal sensing
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文旨在以採用CMOS電晶體作為感測元件並建構溫度感測生醫晶片作為研究生化反應時溫度變化與分佈的平台,期利用8×8及16×16溫度感測陣列並搭配數位電路的多工性來驗證及加速在此領域的研究。過去溫度感測器陣列的研發多用於紅外線熱感測,我們所開發晶片也可應用於此方面。

      我們所建構的感測機制為使用PMOS電晶體操作在飽和區作溫度感測。由於此時PMOS感測電晶體之電流與溫度變化是成正比關係,故經由所設計之感測電路我們可在輸出端得到與溫度變化相對應之輸出信號。

      在電路架構配置方面我們將8×8溫度感測陣列之感測電晶體與電阻加熱器集中排列於晶片中心處,使其與感測電路分開,以得到排列較密的陣列並避免所感測的熱影響到感測電路。所設計之偏壓電路在2D陣列中是每一行感測器共用一組,所需的面積及I/O pad因此可非常精簡。另外在16×16溫度感測陣列方面,則是所有256個感測電晶體皆共用一偏壓電路,更加減少了晶片的面積以及功率消耗。

      所建構8×8感測電晶體面積為202 μm × 183 μm而16×16感測電晶體面積為513 μm × 777 μm,感測度為5 mV/1℃,標準差為8.73%,並最小感測度可達0.1℃,經量測後可準確操作在25℃~40℃溫度範圍內。


    In this research, we describe the design and characterization of a 8×8 and a 16×16 temperature sensor arrays implemented in a standard CMOS process. The presented construction is based on PMOS transistors operated in saturation region for thermal sensing. Its output level is determined by the sensing PMOS transistor’s saturation current which is proportional to temperature. For the 8×8 sensor array the sensing transistors are placed in the chip center with local polysilicon heaters, preventing other transistors of the sensing circuit from being affected by the temperature variation in the sensors’ area and obtain a more dense arrangement of the sensor array. Also in the 8×8 array, the biasing circuits are shared by every 8 cells, so the chip area could be reduced. In the 16×16 array, all the 256 sensors share one biasing circuit, so the chip area and the power consumption could be more reduced. The 8×8 sensors have an area of 202 μm by 183 μm whereas the 16×16 sensors have an area of 513 μm by 777 μm. The measured resolution is about 5 mV/1℃, whereas the minimum resolution could achieve 0.1℃. The presented temperature sensing could operate accurately over the temperature range 25℃~40℃ with a deviation of 8.73%.

    第1章 緒論 9 1-1 研究動機 9 1-2 微機電技術簡介 10 1-2-1 體型微加工技術 10 1-2-2 面型微加工技術 11 1-2-3 LIGA 技術 12 1-2-4 互補式金氧半導體微機電系統(CMOS-MEMS) 13 1-3 文獻回顧 15 第2章 感測器之原理與設計 21 2-1 感測器之原理與設計 21 2-2 所建構8×8溫度感測陣列之電路設計與原理 22 2-2-1 金氧半場效電晶體搭配主要感測電路之溫度感測機制與架構 22 2-2-2 其他輔助與數位選取電路 25 2-2-3 電路模擬結果與佈局 30 2-2-4 其他晶片量測考量 38 2-3 所建構16×16溫度感測陣列之電路設計與原理 40 2-3-1 新式電路佈局設計與配置 40 2-3-2 電路模擬結果與佈局 43 第3章 量測結果 48 3-1 TSMC 2P4M 0.35µm製程晶片未封裝測試 48 3-2 TSMC 2P4M 0.35µm製程晶片加熱器量測 49 3-3 TSMC 2P4M 0.35µm製程晶片電路量測 51 3-4 葡萄糖之酵素催化反應 58 3-4-1 前置準備 58 3-4-2 反應量測結果 61 第4章 結論 67 4-1 研究成果與討論 67 4-2 未來工作 69 參考文獻 70

    [1] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, et al., “Embedded micromechanical devices for the monolithic integration of MEMS with CMOS,” in Proc. Int. Electron Devices Meeting, Washington, DC, Dec. 10–13, pp. 609-612, 1995.
    [2] K. C. Liddiard, “Thin-Film Resistance Bolometer Ir Detectors,” Infrared Physics, vol. 24, pp. 57-64, 1984.
    [3] J. S. Shie and P. K. Weng, “Design Considerations of Metal-Film Bolometer with Micromachined Floating Membrane,” Sensors and Actuators a-Physical, vol. 33, pp. 183-189, Jun 1992.
    [4] A. Takana, S. Matsumoto, N. Tsukamoto, S. Itoh, E. Endoh, A. Nakazato, Y. Kumazawa, M. Hijikawa, H. Gotoh, T. Takana, and N. Teranashi, “Silicon IC process compatible bolometer infrared focal plane array, ”Proc. Int. Conf. Solid State Sensors and Actuators, 8th, Stockholm, pp. 632-635, 1995.
    [5] L. Brunetti and E. Monticone, “Properties of Nickel Thin-Films on Polyimide Substrata for Hf Bolometers,” Measurement Science & Technology, vol. 4, pp. 1244-1248, Nov 1993.
    [6] M. E. Macdonald and E. N. Grossman, “Niobium Microbolometers for Far-Infrared Detection,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, pp. 893-896, Apr 1995.
    [7] W. Lang, et al., “A Thin-Film Bolometer Using Porous Silicon Technology,” Sensors and Actuators a-Physical, vol. 43, pp. 185-187, May 1994.
    [8] Li Wang, David M. Sipe, Yong Xu, and Qiao Lin “A MEMS Thermal Biosensor for Metabolic Monitoring Applications,” Journal of Microelectromechanical Systems, vol. 17, no. 2, pp. 318-327, April 2008.
    [9] Danijela Randjelovi´c, Anastasios Petropoulos, Grigoris Kaltsas ,Miloˇs Stojanovi´c , ˇ Zarko Lazi´c, Zoran Djuri´c, Milan Mati´c, “Multipurpose MEMS thermal sensor based on thermopiles,” Sensors and Actuators A 141, pp. 404-413, 2008.
    [10] R. Lenggenhager, H. Baltes, J. Peer, and M. Forster, “Thermoelectric infrared sensors by CMOS technology,” IEEE Electron Device Lett., vol. 13, no. 9, pp. 454-456, Sep. 1992.
    [11] K. A. A. Makinwa and M. F. Snoeij, “A CMOS temperature-to-frequency converter with. an inaccuracy of less than +/- 0.5 degrees C (3 sigma) from -40 degrees C to 105 degrees C,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2992-2997, Dec 2006.
    [12] C. Hanson, “Uncooled thermal imaging at Texas Instruments,” Proc. of SPIE, Infrared Technology XIX, vol. 2020, 1993.
    [13] T.D. Binnie, H.J. Weller, Z. He, and D. Setiadi, “An integrated 16 □ 16 PVDF pyroelectric sensor array,” IEEE trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, no. 6, November 2000.
    [14] J. Cooper, “Minimum Detectable Power of a Pyroelectric Thermal Receiver,” Review of Scientific Instruments, vol. 33, pp. 92-&, 1962.
    [15] N.M. Shorrocks, A. Patel, M.J. Walker, and A.D. Parsons, “Uncooled pyroelectric arrays for contactless temperature measurements,” in Smart Focal Plane Arrays and Focal Plane Array Testing, Proc. SPIE, vol. 2474, pp. 98-109, 1995.
    [16] D. Setiadi, H. Weller, and T.D. Binnie, “A pyroelectric polymer infrared sensor array with a charge amplifier readout,” in Eurosensor XII, pp. 1091-1094, 1998.
    [17] R. Amantes, L.A. Goodman, F. Pantuso, D.J. Sauer, M. Varghese, T.S. Villani, and L.K. White, “Progress towards an uncooled IR imager with 5mK NEDT,” SPIE conference on Infrared Technology and Applications, XXIV, vol. 3436, pp. 647-659, San Diego, CA, 1998.
    [18] S.R. Manalis, S.C. Minne, C.F. Quate, G.G. Yaralioglu, and A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation,” Appl. Phys. Lett., vol.70, pp. 3311-3313, 1997.
    [19] P.I. Oden, P.G. Datskos, and T. Thundat, “Uncooled thermal imaging using piezoresistive microcantilever,” Appl. Phys. Lett., vol.69, pp. 3277-3279, 1996.
    [20] H. Lakdawala and G.K. Fedder, “CMOS micromachined infrared imager pixel,” in Technical Digest of the IEEE International Conference on Solid-State Sensors and Actuators, Munich, Germany, pp. 1548-1551, 2001.
    [21] Baer, T. Hull, K. Najafi, and K.D. Wise, “A multiplexed silicon infrared thermal imager,” Transducers 91’, pp. 631-634, 1991.
    [22] A. Schaufelbuhl, N. Schneeberger, U. Munch, O. Paul, and H. Baltes, “Uncooled low-cost thermal imager using micromachined CMOS integrated sensor array,” Technical Digest of the IEEE International Conference on Solid-State Sensors and Actuators, Sendai, Japan, 1999.
    [23] T. W. Kenny, et al., “Micromachined Tunneling Displacement Transducers for Physical Sensors,” Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 11, pp. 797-802, Jul-Aug 1993.
    [24] A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 933–937, Jul. 1996.
    [25] M. Tuthill, “A switched-current, switched-capacitor temperature sensor in 0.6 µm CMOS,” IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 1117–1122, Jul. 1998.
    [26] G. C. M. Meijer, G. Wang, and F. Fruett, “Temperature sensors and voltage references implemented in CMOS technology,” IEEE Sensors J., vol. 1, no. 3, pp. 225–234, Oct. 2001.
    [27] M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS temperature sensor with a 3σ inaccuracy of 0.1℃ from 55℃ to 125℃,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2805–2815, Dec. 2005.
    [28] M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A high-accuracy temperature sensor with second-order curvature correction and digital bus interface,” in Proc. ISCAS, pp. 368–371, May 2001.
    [29] Chun-Chi Chen, Poki Chen, An-Wei Liu, Wen-Fu Lu and Yu-Chi Chang, “An accurate CMOS delay-line-based smart temperature sensor for low-power low-cost systems,” Meas. Sci. Technol. 17, pp. 840-846, 2006.
    [30] I. M. Filanovsky, “Voltage reference using mutual compensation of mobility and threshold voltage temperature effects,” ISCAS 2000: IEEE International Symposium on Circuits and Systems - Proceedings, Vol V, pp. 197-200, 2000.
    [31] Michael S-C Lu, Dong-Hang Liu, Li-Sheng Zheng and Sheng-Hsiang Tseng, “CMOS micromachined structures using transistors in the subthreshold region for thermal sensing,” J. Micromech. Microeng. 16, pp. 1734-1739, 2006.
    [32] Pablo Ituero, José L. Ayala, and Marisa López-Vallejo, “A nanowatt smart temperature sensor for dynamic thermal management,” IEEE Sensors Journal, vol. 8, no. 12, pp. 2036-2043, December 2008.
    [33] S. Memik, R. Mukherjee, M. Ni, and J. Long, “Optimizing thermal sensor allocation for microprocessors,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Syst., vol. 27, no. 3, pp. 516–527, Mar. 2008.
    [34] B. Danielsson, “Calorimetric biosensors,” Biochem. Soc. Trans., vol. 19, pp. 26–28, 1991.
    [35] L. Wang, et al., “A MEMS thermal biosensor for metabolic monitoring applications,” Journal of Microelectromechanical Systems, vol. 17, pp. 318-327, Apr 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE