簡易檢索 / 詳目顯示

研究生: 蘇達坦
Sudhakar Dattatray Tanpure
論文名稱: 使用金催化將炔烴類變換成高度官能基化之有機骨架分子
Gold-Catalyzed Utilization of Alkynes into Highly Functionalized Organic Frameworks
指導教授: 劉瑞雄
Liu, Rai-Shung
口試委員: 李文泰
Li, Wen-Tai
黃國柱
HWANG, KUO-CHU
蔡易州
TSAI, YI-CHOU
侯敦仁
Hou, Duen-Ren
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 643
中文關鍵詞: 金催化不对称合成接力催化剂
外文關鍵詞: Gold-catalysis, Asymmetric Synthesis, Relay Catalyst
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本篇論文討論了利用金或銀催化劑發展新型的合成有機轉換。使用這些金屬將可從各種易取得的反應物中精細、有條理且有效率地合成多種雜環和碳環化合物。為方便理解,本篇將分為三大篇章。
    第一章包括金催化3-烯基-1-炔基醯銨衍生物與硝酮的1,4-氧代官能化,產生兩種不同的E構型產物。我們從帶有C(4)-推電子基的 3-烯基-1-炔基醯銨衍生物獲得了1,4-氧代芳基化的產物,且帶有C(4)-芳基基反應物可得到1,4-氧代胺化的產物。我們認為如果乙烯基金碳烯是穩定的,則亞胺便會在金碳烯上進行對位芳基化。而若乙烯基金碳烯是高度缺電子的,則N攻擊是不可逆的並且進一步發生1,4-氧代胺化。
    第二章內容包含了一鍋化合成雙環[3.2.1]辛-6-烯基骨架的一系列產物,其中涉及了2-(1-炔基)-2-烯基-1-酮基衍生物與帶有取代基的環戊二烯經金催化進行 (4+3)-環加成反應,透過使用掌性金催化劑可達成非鏡像選擇性 (dr > 25:1)以及立體選擇性 (ee高達 99.9 % ),經DFT理論計算我們假設了針對含金1,3-偶極子與環戊二烯進行環加成反應的三步離子反應機制,其中將優先排列至外部空間。

    第三章使用了Zn(II)和Au(I)催化劑從 2-炔基苯基醛亞胺與α-重氮酯合成3H-苯并[d]吖呯-2-羧酸酯。Zn(II)先是催化了α-重氮酯和2-炔基苯基醛亞胺身上的亞胺基進行加成反應,選擇性地提供預期的反式-氮丙啶,不同於過去Zn(OTf)2被報導可從常見的亞胺提供順式/反式氮丙啶的混合物。隨後Au(I)催化了結構中反式氮丙啶與炔官能基進行分子內環化,形成可觀察的3H-苯并[d]吖呯。 該催化展現了 2-炔基苯基醛亞胺的新合成用途,擺脫了先前形成的異喹啉鎓鹽。


    The development of novel synthetic organic transformations utilizing gold or silver catalysts is discussed in this dissertation. The use of these metals enables the delicate, methodical, and efficient synthesis of numerous heterocyclic and carbocyclic compounds from a wide range of readily accessible substrates. To facilitate comprehension, this dissertation is divided into three chapters.
    The first chapter comprised of gold-catalyzed 1,4-oxofunctionalizations of 3-en-1-ynamides with nitrones, yielding two distinct E-configured products. We obtained 1,4-oxoarylation products from 3-en-1-ynamides bearing C(4)-electron donating substituents, and 1,4-oxoamination products from those analogues bearing C(4)-aryl substituents. We propose that if vinylgold carbenes is stable, imines undergo a p-arylation on these gold carbenes. If vinylgold carbenes are highly electron-deficient, this N-attack is irreversible to enable 1,4-oxoaminations.
    The second chapter comprised of a one-pot construction of bicyclo[3.2.1]oct-6-ene frameworks involves gold-catalyzed (4+3)-cycloadditions between 2-(1-alkynyl)-2-alken-1-ones and substituted cyclopentadienes; diastereoselectivity (dr > 25:1) and enantioselectivity (up to 99.9% ee) are achieved with a chiral gold catalyst. Our DFT calculations suggest a three-step ionic mechanism for the cycloadditions of gold-containing 1,3-dipoles with cyclopentadienes, in which an exo-spatial arrangement is preferable.
    The Third chapter comprised of synthesis of 3H-benzo[d]azepine-2-carboxylates from 2-alkynylphenyl aldimines and α-diazo esters using Zn(II) and Au(I) catalysts described. In this relay catalysis, Zn(II) catalyzes an addition of α-diazo ester to the imine of 2-alkynylphenyl aldimine to afford expected trans-aziridine selectively while Zn(OTf)2 was reported to give a mixture of cis/trans aziridines from common imines. Subsequently, Au(I) catalyzes an intramolecular cyclizations of such trans-aziridine/alkyne functionalities to form the observed 3H-benzo[d]azepines. This catalysis represents new synthetic utility of 2-alkynylphenyl aldimines, eluting a prior formation of isoquinoliniums salts.

    CONTENTS Table of content II Acknowledgment IV Abstract VI List of Schemes IX List of Tables XII List of Figures XIII List of Publications XIV Abbreviations XV Table of content Chapter 1: Gold(I)-Catalyzed Oxidative 1,4-Additions of 3-En-1-ynamide with Nitrones via Carbon versus Nitrogen-Addition Chemoselectivity Introduction 02 Result and Discussion 17 Conclusion 31 Experimental Procedure 31 Spectral Data 37 References 59 X-ray Crystallographic Data 64 1H and 13C NMR Spectra 70 Chapter 2: Gold(I)-Catalyzed Highly Diastereo- and Enantioselective Constructions of Bicyclo[3.2.1]oct-6-ene Frameworks via (4+3)- Cycloadditions Introduction 161 Result and Discussion 174 Conclusion 204 Experimental Procedure 204 Spectral Data 211 References 246 X-ray Crystallographic Data 250 Computational Details 262 1H and 13C NMR Spectra 305 HPLC Data 441 Chapter 3: Relay Zn(II)- and Au(I)-Catalyzed Aziridination/Cyclization/Ring Expansion Sequence to form 3-Benzazepine Derivatives Introduction 471 Result and Discussion 485 Conclusion 503 Experimental Procedure 503 Spectral Data 511 References 535 X-ray Crystallographic Data 540 1H and 13C NMR Spectra 546

    Reference chapter 1:
    a) Aguilar, E.; Santamaria, J. Org. Chem. Front. 2019, 6, 1513–1540. (b) L. S. Hegedus and B. C. G. Södeberg, in Transition Metals in the Synthesis of Complex Organic Molecules, 3rd edition, University Science Books, Sausalito, CA, 2010.
    2) Bhunia, S.; Ghosh, P.; Patra, S. R. Adv. Synth. Catal. 2020, 362, 3664−3708.
    3) Reviews N, O-functionalizations of alkynes see: (a) Yeom, H. S.; Shin, S. Acc. Chem. Res, 2014, 47, 966-977. (b) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348-1367.
    4) Gorin, D. J.; Toste, F. D. Nature. 2007, 446, 395-403.
    5) (a) Harris, R. J.; Widenhoefer, R. A. Chem. Soc. Rev. 2016, 45, 4533-4561. (b) Wang, Y.; Muratore, M. E.; Echavarren, A. M. Chem. Eur. J. 2015, 21, 7332-7339. (c) Dorel, R.; Echavarren, A. M. J. Org. Chem. 2015, 80, 7321-7332. (d) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677-688.
    6) Benitez, D.; Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard, W. A.; Toste, F. D. Nat. Chem. 2009, 1, 482-486.
    7) Zhang, L. Acc. Chem. Res. 2014, 47, 877−888.
    8) (a) Li, C.-W.; Pati, K.; Lin, G.-Y.; Sohel, S. M. A.; Hung, H.-H.; Liu, R.-S. Angew. Chem., Int. Ed. 2010, 49, 9891–9894. (b) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200– 7202.
    9) (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160–4161. (b) Yeom, H. S.; Lee, J. E.; Shin, S. Angew. Chem., Int. Ed. 2008, 47, 7040–7043.
    10) Yeom, H. S.; Shin, S. Acc. Chem, Res. 2014, 47, 966-977.
    11) (a) Xiao, J.; Li, X. Angew, Chem. Int. Ed. 2011, 50, 7226-7236. (b) L. Zhang, Acc. Chem, Res. 2014, 47, 877-888. (c) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448-4458. (d) Huple, D.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348-1367.
    12) (a) James, M. C. B.; Hashmi, A. S. K. In Modern Gold Catalyzed Synthesis; Hashmi, A. S. K., Toste, F. D., Eds.; Wiley-VCH: Weinheim, Germany, 2012; pp 273. (b) Nevado, C.; de Haro, T. In New Strategies in Chemical Synthesis and Catalysis; Pignataro, B., Ed.; Wiley-VCH: Weinheim, Germany, 2012; pp 247. (c) Moss, R. A., Doyle, M. P., Eds. Contemporary Carbene Chemistry; Wiley: New York, 2014; Chapter 16. (d) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861-2904. (e) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061-3071; For 8-methylquinoline oxides, see selected examples: (f) Li, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070-14072. (g) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482-8485. (h) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412-17415.
    13) Xiao, J.; Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160-4161.
    14) Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225-1228.
    15) Qian, D.; Zhang, J. Chem. Eur. J. 2013, 19, 6984–6988.
    16) Yeom, H.-S.; Lee, Y.; Jeong, J.; So, E.; Hwang, S.; Lee, J.-E.; Lee, S. S.; Shin, S. Angew. Chem., Int. Ed. 2010, 49, 1611-1614.
    17) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258-3259.
    18) Li, C.-W.; Pati, K.; Lin, G.-Y.; Hung, H.-H.; Liu, R.-S. Angew. Chem. Int. Ed. 2010, 49, 9891-9894.
    19) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482-8485.
    20) Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu. R.-S. Angew. Chem. 2011, 123, 7043-7046; Angew. Chem. Int. Ed. 2011, 50, 6911-6914.
    21) Wei, H.; Bao, M.; Dong, K.; Qiu, L.; Wu, B.; Hu, W.; Xu, X. Angew. Chem. Int. Ed. 2018, 57, 17200–17204.
    22) Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372-15375.
    23) Sahani, R. L.; Liu, R.-S. ACS Catal. 2019, 9, 5890−5896.
    24) Prins-type reactions: (a) Pastor, I. M.; Yus, M. Curr. Org. Chem. 2007, 11, 925−957. (b) Olier, C.; Kaafarani, M.; Gastaldi, S.; Bertrand, M. P. Tetrahedron 2010, 66, 413−445. (c) Han, X.; Peh, G.; Floreancig, P. E. Eur. J. Org. Chem. 2013, 2013, 1193−1208. d) Reddy, B. V. S.; Anjum, S. R.; Sridhar, R. RSC Adv. 2016, 6, 75133−75137. e) Lalli, C.; Weghe, P. V. D. Chem. Commun. 2014, 50, 7495−7498.
    25) For metal-catalyzed (3 + 3)-annulations of nitrones, see: (a) Xu, X.; Doyle, M. P. Acc. Chem. Res. 2014, 47, 1396−1405. (b) Cordier, M.; Archambeau, A. Org. Lett. 2018, 20, 2265−2268. (c) Shintani, R.; Park, S.; Duan, W.-L.; Hayashi, T. Angew. Chem., Int. Ed. 2007, 46, 5901−5903.
    26) Bhunia, S.; Chang, C.-J.; Liu, R.-S.; Org. Lett. 2012, 14, 5522-5525.
    27) Reviews for gold carbenes: (a) Ye, L.-W.; Zhu, X.-Q.; Sahani, R. L.; Xu, Y.; Qian, P.-C.; Liu, R.-S. Chem. Rev. 2020, https:// doi.org/10.1021/acs.chemrev.0c00348. (b) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966-977. (c) Zhang, L. A. Acc. Chem. Res., 2014, 47, 877-888. (d) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348-1367. (e) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev., 2016, 45, 4448-4458. (f) Wang, Y.; Muratore, M. E.; Echavarren, A. M. Chem. Eur. J. 2015, 21, 7332-7339. (g) Liu, L.; Zhang, J. Chem. Soc. Rev., 2016, 45, 506-516. (h) Lynch, C.-C.; Sripada, A.; Wolf, C. Chem. Soc. Rev. 2020, 49, 8543—8583. (i) Chen, Y.-B.; Qian, P.-C.; Ye, L.-W. Chem. Soc. Rev. 2020, 49, 8897—8909.
    28) For the generation of α-oxo gold carbenes with pyridine-based N-oxides, see selected examples: (a) Ye, L.-W.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258-3259. (b) Wang, Y.; Ji, K.; Lan, S.; Zhang, L. Angew. Chem. 2012, 124, 1951-1954. (c) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550-5851. (d) Frost, T. M.; Bats, J. W.; Hashmi, A.S. K. Highly J. Am. Chem. Soc. 2000, 122, 11553-11554. (e) Jin, H.; Tiab, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 12688-12692. (f) Zheng, Y.; Zhang, J.; Cheng, X.; Xu, X.; Zhang, L. Angew. Chem. Int. Ed. 2019, 58, 5241-5245. (g) Shu, C.; Shi, C.- Y.; Sun, Q.; Zhou, B.; Li, T.- Y.; He, Q.; Lu, X.; Liu, R.-S.; Ye, L.-W. ACS Catal. 2019, 9, 1019-1025. (h) Kale, B.S.; Liu, R.-S. Org. Lett. 2019, 21, 8434-8438. (i) Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem. Int. Ed. 2011, 50, 6911-6914. (j) Pawar, S. K.; Wang, C.-D; Bhunia, S.; Jadhav, A. M.; Liu, R.-S. Angew. Chem. 2013, 125, 7707-7711. (k) Bhunia, S.; Ghorpade, S.; Huple, D. B.; Liu, R.-S. Angew. Chem. 2012, 124, 2993-2996. (l) Li, L.; Shu, C.; Zhou, B.; Yu, Y.-F.; Xiao, X.-Y.; Ye, L.-W. Chem. Sci., 2014, 5, 4057–4064.
    29) (a) Wagh, S.; Sharma, P.; Patil, M. D.; Liu, R.-S. Org. Chem. Front., 2019, 6, 226-230. (b) Sasane, A. V.; Raj, A. S. K.; Chao, T.-S.; Chen, M.; Liu, R.-S. Chem. Eur. J. 2020, 26, 16932-16938. (C) Sahani, R.-L.; Patil, M. D.; Wagh, S.; Liu, R.-S. Angew. Chem. Int. Ed. 2018, 57, 14878-14882. (d) More, S. A.; Chao, T.-S.; Cheng, M.-J.; Liu, R.-S. Adv. Synth. Catal. 2020, 362, 1-8.
    30) For gold-catalyzed reactions of 3-en-1-ynamides, see selected examples: (a) Giri, S. S; Liu, R.-S. Chem. Sci. 2018, 9, 2991-2995. (b) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun., 2012, 48, 7200-7202. (C) Singh, R. R.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1421-1427. (d) Giri, S. S.; Lin, L.-H.; Jadhav, P. D.; Liu, R.-S. Adv. Synth. Catal. 2017, 359, 590-596. (e) Jadhav, A. M.; Pagar, V. V.; Huple, D. B.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54, 3812-3816. (f) Jadhav, A. M.; Huple, D. B.; Singh, R. R.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1017-1022. (g) Zheng, R.-H.; Guo, H.-C.; Yang, M.-Y.; Liu, M.-Q.; Ye, L.-W. Chin. J. Org. Chem. 2019, 39, 1672.
    31) For X-ray diffraction studies of key compounds: (a) 1-3a: CCDC-2048163. (b) 1-3e: CCDC-2048168. (c) 1-5f: CCDC-2048171.
    32) For a 1,4-oxoarylations of species 1-1a with nitrone 1-2d (eq 6), a removal of p-chloride is rationalized in the following mechanism. The corresponding intermediate 1-E’ becomes attacked by water to form the same intermediate 1-F and highly acidic HOCl that was identified by a reported method. Hydrodeauration of species 1-F affords E-configurated product 1-3a initially that becomes rearranged to a mixture of Z- and E-isomers under the reaction conditions. For analysis of HOCl,
    see, Liu, C.; Gunten, U. V.; Croue, J.-P. Environ. Sci. Technol. 2012, 46, 11054−11061.
    33) For catalytic 1,2-oxoarylations of alkynes, see selected examples: (a) see ref.26. (b) Cuenca, A. B.; Montserrat, S.; Hossain, K. M.; Mancha, G.; Lledos, A.; Simon, M.; Ujaque, G.; Asensio, G. Org. Lett. 2009, 11, 4906-4909. (c) see ref. 23. (d) Lu, B.; Li, Y.; Wang, Y.; Aue, D. H.; Luo, Y.; Zhang, L. J. Am. Chem. Soc. 2013, 135, 8512-8524. (e) Li, G.; Zhang, L. Angew. Chem. 2007, 119, 5248-5251.
    34) For catalytic 1,2-oxoaminations of alkynes, see selected examples: (a) See ref. 22. (b) Mokar, B. D.; Huple, D. B.; Liu, R.-S. Angew. Chem. Int. Ed. 2016, 55, 11892-11896. (c) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412-17415. (d) Lu, B.; Luo, Y.; Liu, L.; Ye, L.; Wang, Y.; Zhang, L. Angew. Chem. 2011, 123, 8508-8512. (e) Cai, J.; Wu, B.; Rong, G.; Zhang, C.; Qiu, L.; Xu, X. Org. Lett. 2018, 20, 9, 2733-2736. (f) Ye, L.-W.; He, W.; Zhang, L. Angew. Chem. 2011, 123, 3294-3297. (g) Yeom, H.-S.; So, E.; Shin, S. Chem. Eur. J. 2011, 17, 1764-1767.
    35) (a) Giri, S. S.; Lin, L. H.; Jadhav, P. D.; and Liu, R.-S. Adv. Synth. Catal. 2017, 359, 590-596. (b) Jadhav, A.M.; Pagar, V. B.; Huple, D. B.; and Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54, 3812-3816.
    36) Dateer, R. B.; Pati, K. K.; Liu, R.-S. Chem. Commun., 2012, 48, 7200-7202.
    37) (a)Vasu, D.; Liu, R.-S.; Chem. Eur. J. 2012, 18, 13638-13641. (b) Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc., 2002, 124, 4572.

    Reference chapter 2:
    1) Hudlicky, T.; Natchus, M. G. In Organic Synthesis: Theory and Applications; Hudlicky, T., Ed.; JAI: Greenwich, CT, 1993; Vol. 2, pp 1–23.
    2) Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon: Oxford, 1990.
    3) Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002.
    4) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49–92.
    5) (a) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351–3378. (b) Jiménez- Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326–3350. (c) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431–436. (d) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208–3221. (e) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994–2009. (f) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657–1712. (g) Shen, H. C. Tetrahedron 2008, 64, 7847–7870.
    6) Melhado, A. D.; Amarante, G. W.; Wang, Z. J.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 3517–3527.
    7) Melhado, A. D.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12638–12639.
    8) Martín-Rodríguez, M.; Nájera, C.; Sansano, J. M.; Wu, F.-L. Tetrahedron: Asymmetry. 2010, 21, 1184–1186.
    9) Liu, F.; Yu, Y.; Zhang, J. Angew. Chem. Int. Ed. 2009, 48, 5505-5508.
    10) Liu, F.; Qian, D.; Li, L.; Zhao, X.; Zhang, J. Angew. Chem. Int. Ed. 2010, 49, 6669 –6672.
    11) Gao, H.; Zhao, X.; Yu, Y.; Zhang, J. Chem. Eur. J. 2010, 16, 456-459.
    12) Wang, Y.; Zhang, P.; Qian, D.; Zhang, J. Angew. Chem., Int. Ed. 2015, 54, 14849–14852.
    13) Di, X.; Wang, Y.; Wu, L.; Zhang, Z.-M.; Dai, Q.; Li, W.; Zhang, J. Org. Lett. 2019, 21, 3018−3022.
    14) Kardile, R. D.; Chao, T.-H.; Cheng, M.-J.; Liu, R.-S. Angew. Chem. Int. Ed. 2020, 59, 10396 –10400; Angew. Chem. 2020, 132, 10482–10486.
    15) Smith, H. D.; Korkor, O.; Davies, H. M. L. Tetrahedron lett. 1987, 28, 1853-1856.
    16) Huang, J.; Hsung, R. P. J. Am. Chem. Soc. 2005, 127, 50-51.
    17) Alonso, I.; Faustino, H.; López, F.; Mascareñas, J. L. Angew. Chem. Int. Ed. 2011, 50, 11496-11500; Angew. Chem. 2011, 123, 11698-11702.
    18) Yuan, Z.; Zeng, Y.; Feng, Z.; Guan, Z.; Lin, A.; Yao, H. Nat Commun. 2020, 11, 2544.
    19) Gao, H.; Wu, X.; Zhang, J. Chem. Eur. J. 2011, 17, 2838-2841.
    20) Selected examples for (4+3)-cycloadditions allyl cation synthons, see: (a) Yin, Z.; He, Y.; Chiu, P. Chem. Soc. Rev. 2018, 47, 8881-8924. (b) Harmata, M. Chem. Commun. 2010, 46, 8904-8922. (c) Harmata, M. Chem. Commun. 2010, 46, 8886-8903. (d) Garcia, P.; Malacria, M.; Simonneau, A.; Aubert, C.; Fensterbank, L. Chem. Rev. 2011, 111, 1954-1993. (e) Fernández, I.; Cossίo, F. P.; Cózar, A. D.; Lledós, A.; Mascareñas, J. L. Chem. Eur. J. 2010, 16, 12147–12157. (f) Fernández, I.; Mascareñas, J. L. Org. Biomol. Chem., 2012, 10, 699–704
    21) For natural products, see: a) Goren, A. C.; Aydogmus, Z.; Karagoz, A.; Yildiz, Y. K.; Aslan, I.; Topcu, G.; Kilic, T. Rec. Nat. Prod. 2020, 14:4, 256-268. (b) Cheenpracha, S.; Yodsaoue, O.; Karalai, C.; Ponglimanont, C.; Subhaadhirasalul, S.; Tewtrakul, S.; Opas, A. K. Phytochemistry. 2006, 67, 2630-2634. (c) kim, S.; Na, M.; Oh, H.; Jang, J.; Sohn, C. B.; Kim, B. Y.; Oh, W. K.; Ahn, J. S. J. Enz. Inhib. Med. Chem. 2006, 21, 379-383. (d) Costa-Lotufo, L. V.; Cunha, G. M. A.; Farias, P. A. M.; Viana, G. S. B.; Cunha, K. M. A.; pessoa, C.; Moraes, M. O.; Silveria, E. R.; Gramosa, N. V.; Rao, V. S. N. Toxicon. 2002, 40, 1231-1234.
    22) For oxyallyl cations in (4+3)-cycloadditions, see recent examples: (a) Marx, V. M.; Burnell, D. J. J. Am. Chem. Soc. 2010, 132, 1685–168. (b) Xiong, H.; Berry, C. R.; Rameshkumar, C.; Hsung, R. P. J. Am. Chem. Soc. 2001, 123, 7174-7175. (c) Prié, G.; Prévost, N.; Twin, H.; Fernandes, S. A.; Hayes, J. F.; Shipman, M. A. Angew. Chem., Int. Ed. 2004, 43, 6517-6519. (d) Sachinvala, N. D.; Roy, S.; Basu, B.; Raychuadhari, S. R.; Miller, D. B.; Sharma, R. B.; Salomon, R. G. J. Am. Chem. Soc. 1991, 113, 3085-3095. (e) Wacharasindhu, S.; Harmata, M. Org. Lett. 2005, 7, 13, 2563-2565. (f) Sung, M. J.; Lee, H. I.; Chong, Y.; Cha, J. K. Org. Lett. 1999, 1, 12, 2017–2019. (g) See ref.16. (h) Lo, B.; Lam, S.; Wong, W.-T.; Chiu, P. Angew. Chem. Int. Ed. 2012, 51, 12120-12123. (i) Liu, C.; Oblak, E. Z.; Wal, M. N. V.; Dilger, A. K.; Almstead, D. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 2134-2137. (j) Topinka, M.; Zawatzky, K.; Barnes, C. L.; Welch, C. J.; Harmata, M. Org. Lett. 2017, 19, 4106- 4109. (k) Hyde, A. M..; Jacobsen, E. N.; Levina, A.; Banik, S. M. Science. 2017, 358, 761-764.
    23) For metal-π-allenes in (4+3)-cycloadditions, see recent examples: (a) Trillo, B.; López, F.; Gulίas, M.; Castedo, L.; Mascareñas, J. L. Angew. Chem. Int. Ed. 2008, 47, 951-954. (b) Mauleón, P.; Zeldin, R. M.; González, A. Z.; Toste, F. D. (c) See ref. 17. (d) Villar, L.; Martίnez, J. I.; Prieto, L.; Reyes, E.; Carrillo, L.; Uria, U.; Vicario, J. L. Angew. Chem. Int. Ed. 2017, 56, 10535-10538. (e) Luzung, M. R.; Mauleón, P.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12402-12403. (f) González, A. Z.; Benitez, D.; Tkatchouk, E.; Goddard, W. A.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 5500–5507. (g) Alonso, I.; Trillo, B.; López, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lledós, A.; Mascareñas, J. L. J. Am. Chem. Soc. 2009, 131, 13020–13030.
    24) For vinylmetal carbenes in (4+3)-cycloadditions, see (a) Cheng, Q.-Q.; Deng, Y.; Lankelma, M.; Doyle, M. P. Chem. Soc. Rev. 2017, 46, 5425-5443. (b) Denton, J. R.; Davies, H. M. L. Chem. Soc. Rev. 2009, 38, 3061-3071. (c) Ahmed, G.; Churchill, M. R.; Davies, H. M. L. J. Am. Chem. Soc. 1996, 118, 10774-10782. (d) Huby, N. J. S.; Davies, H. M. L. Tetrahedron Lett. 1992, 33, 6935-6938. (e) Hodges, L. M.; Davies, H. M. L. J. Org. Chem. 2002, 67, 5683-5689. (f) See ref.15. (g) Reddy, R. P.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 10312-10313.
    25) Tan, B.; Lu, Y.; Zeng, X.; Chua, P. J.; Zhong, G. Org. Lett. 2010, 12, 2682-2685.
    26) (a) Chen, L.; Chen, K.; Zhu, S. Chem. 2018, 4, 1208–1262. (b) Gao, H.; Zhang, J. Chem. Eur. J. 2012, 18, 2777-2782. (c) Gao, H.; Wu, X.; Zhang, J. Chem. Commun. 2010, 46, 8764-8766. (d) Kardile, R. D.; Chao, T.-H.; Cheng, M.-J.; Liu, R.-S. Angew. Chem. Int. Ed. 2020, 59, 10396 –10400. (e) Zhou, L.; Zhang, M.; Li, W.; Zhang, J. Angew. Chem. Int. Ed. 2014, 53, 6542 –6545. (f) Di, X.; Wang, Y.; Wu, L.; Zhang, Z.-M.; Dai, Q.; Li, W.; Zhang, J. Org. Lett. 2019, 21, 3018–3022. (g) Wang, Y.; Zhang, Z.-M.; Liu, F.; He, Y.; Zhang, J. Org. Lett. 2018, 20, 6403 – 6406. (h) Zhang, Z.-M.; Chen, P.; Li, W.; Niu, Y.; Zhao, X.-L.; Zhang, J. Angew. Chem. Int. Ed. 2014, 53, 4350-4354. (i) Liu, F.; Qian, D.; Li, L.; Zhao, X.; Zhang, J. Angew. Chem. Int. Ed. 2010, 49, 6669-6672. (j) Wang, Y.; Zhang, P.; Qian, D.; Zhang, J. Angew. Chem. Int. Ed. 2015, 54, 14849-14852. (k) Qian, D.; Zhang, J. Acc. Chem. Res. 2020, 53, 2358-2371.
    27) (a) Chen, C.-N.; Liu, R.-S. Angew. Chem. Int. Ed. 2019, 58, 9831–9835. (b) Jadhav, P. D.; Chen, J. X.; Liu, R.-S. ACS Catal. 2020, 10, 5840–5845. (c) Mokar, B. D.; Jadhav, P. D.; Pandit, Y. B.; Liu, R.-S. Chem. Sci. 2018, 9, 4488–4492. (d) Funami, H.; Kusama, H.; Iwasawa, N. Angew. Chem. Int. Ed. 2007, 46, 909–911. (e) Lee, J. H.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 912–914. (f) Chen, C.-N.; Cheng, W.-M.; Wang, J.-K.; Chao, T.-H.; Cheng, M.-J.; Liu, R.-S. Angew. Chem. Int. Ed. 2021, 60, 4479-4484.
    28) Compound 2-3a (2106137), 2-4j (2106138), (-)-2-3a (2126459), (-)-2-3c (2126460), (-)-2-5a (2126458), (-)-2-6c (2106177) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
    29) (a) Chen, J.-X.; Jadhav, P. D.; Chen, C.-N.; Liu, R.-S. Org. Lett. 2021, 23, 6246-6251. (b) Chen, X.; Zhou, Y.; Hong, M.; Ling, Y.; Yin, D.; Wang, S.; Zhang, X.; Rao, W. Adv. Synth. Catal. 2018, 360, 3700 –3708.
    30) (a) Peloquin, A. J.; Stone, R. L.; Avila, S. E.; Rudico, E. R.; Horn, C. B.; Gardner, K. A.; Ball, D. W.; Johnson, J. B.; Iacono, S. T.; Balaich, G. J. J. Org. Chem. 2012, 77, 14, 6371–6376. (b) Payette, J. N.; Yamamoto, H. J. Am. Chem. Soc. 2007, 129, 9536-9537.
    31) For temperature-dependent enantioselectivity, see selected examples: (a) Wang, S.; Xiao, J.; Li, J.; Xiang, H.; Wang, C.; Chen, X.; Carter, R. G.; Yang, H. Chem. Commun. 2017, 53, 4441-4444. (b) Sakamoto, K.; Tsukamoto, T.; Orita, A.; Otera, J. Tetrahedron Lett. 1998, 39, 3201-3204. (c) Lin, C.; Hiraga, Y.; Masaki, K.; Lefuji, H.; Ohkata, K. Biocatalysis and Biotransformation, 2006, 24, 390-395. (d) Naruse, S.; Takano, K.; Fukuda, K.; Katoh, A.; Inoue, Y.; Saito, R. Org. Lett. 2006, 8, 2067-2070.
    32) For enantioselective gold catalysis, see recent reviews: (a) López, F.; Mascareñas, J. L. Beilstein J. Org. Chem. 2013, 9, 2250-2264. (b) Jiang, J.-J.; Wong, M.-K. Chem. Asian J. 2021, 16, 364-377. (c) Zi, W.; Toste, F. D. Chem. Soc. Rev. 2016, 45, 4567–4589. (d) Li, Y.; Li, W.; Zhang, J. Chem. Eur. J. 2017, 23, 467–512. (e) Wang, Y.-M.; Lackner, A. D.; Toste, F. D. Acc. Chem. Res. 2014, 47, 889–901.
    33) (a)see ref. 26d. (b) Poulsen, P. H.; Li, Y.; Lauridsen, V. H.; Jørgensen, D. K. B.; Palazzo, T. A.; Meazza, M.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2018, 57, 10661 –10665. (c) Qian, L.-L.; Yi, R.; Min, X.-T.; Hu, Y.-C.; Wan, B.; Chen, Q.-A. Tetrahedron. 2020, 76, 131327.
    34) Scettri, A.; D’Auria, M.; Piancatelli, G. Tetrahedron. 1980, 36, 661-663.

    Reference chapter 3:
    1) Comperhensive review on α-diazocarobnyl compounds, see (a) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091−1160. (b) Padwa, A.; Austin, D. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1797−1815. (c) Padwa, A.; Weingarten, M.D. Chem. Rev. 1996, 96, 223. (d) Doyle, M.P; McKervey, M.A.; Ye, T. in modern catalytic methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998. (e) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911−936. (f) Padwa, A. J. Organomet. Chem. 2001, 30, 50. (g) Davies H.M. L.; Beckwith, R.E.J. Chem. Rev. 2003, 103, 2861.
    2) For a discussion on nucleophilicity of diazo compounds, see: Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H. Chem. - Eur. J. 2003, 9, 4068−4076.
    3) (a) Wenkert, E.; McPherson, A. A. J. Am. Chem. Soc. 1972, 94, 8084. (b) Burkoth, T.L. Tetrahedron Lett. 1969, 57, 5049. (c) Woolsey, N.F.; Khalil, M. H. J. Org. Chem. 1972, 37, 2405.
    4) Jiang, N.; Qu. Z.; Wang, J. Org. Lett. 2001, 3, 2989.
    5) (a) Schollkopf, U.; Frasnelli, H.; Hoppe, D. Angew. Chem., Int. Ed. 1970, 9, 300. (b) Schollkopf, U.; Banhidai, B.; Frasnelli, H.; Meyer, R.; Beckhaus, H. Liebigs Ann. Chem. 1974, 1767.
    6) Pellicciari, R.; Natalini, B. J. Chem.Soc., Perkin trans. 1977, 1, 1882. (b) Pellicciari, R.; Natalini, B.; Sadeghpour, B. M.; Marinozzi, M.; Snyder, J. P.; Williamson, B. L.; Kuethe, J. T.; Padwa, A. J Am. Chem. Soc. 1996, 118,1. (c) Moody, C. J.; Taylor, R. J. Tetrahedron Lett. 1987, 28, 5351.
    7) (a) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263-309. (b) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577-6605. (c) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061-3071. (d) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704-724. (e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
    8) For recent reviews on phototransformations of diazo compounds see: (a) Candeias, N.; Afonso. C. Curr. Org. Chem. 2009, 13, 763. (b) Galkina, O. S.; Rodina, L. L. Russ. Chem. Rev. 2016. 85. 537. (c) Ciszewski, Ł. W.; Rybicka-Jasinska, ́ K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432−448.
    9) Knimper, I. R., Gerisch, M., Suh, I. lW.; Bergman, H.G.; Tilley, T. D. J. Org. Chem. 2003, 68, 9705-9710.
    10) Ranocchiari, M.; Mezzetti, A. Orgariimetallics 2009, 28, 3611-3613.
    11) Lee, S.-H.; Han, T.-D.; Yu, K.; Ahn, K.-H. Bull. Korean Chem. Soc. 2001, 22, 449.
    12) Lee, S.-H.; Song, I.-W. Bull. Korean Chem. Soc. 2005, 26, 223.
    13) (a) Casamibios, L.; Perez, J. A.; Brookhart, M.; Templeton, J. L. J. Org. Chem. 1996. 61, 8358-8359. (b) Morales, D.; Perez, J.; Riera, L.; Riera, V.; C.-Suarez, R.; G.-Granda, S.; Miguel, D. Organometallics 2002, 21, 1540-1545. (c) Yadav, J. S.; Reddy, B. V. S.; Rao, M. S.; Reddj, P. fi. Tetrahedron Lett. 2003, 44, 5275-5278. (d) Antilla, J. C.; Wulff, W. D. J. Am. Chem. Soc. 1999, 121, 5099-5100.
    14) (a) Bew, S. P.; Carrington. R.; Hughes, D. L.; Liddle, J.; Pesce, P. Adv. Synt.Catal. 2009, 351, 2579-2588. (b) Williams, A. L.; Johnston. J. N. J. Am. Chem. Soc. 2004, 126, 1612-1613. (c) Bew, S.P.; Liddle, J.; Hughes, D. L.; Pesce, P.; Thurston, S.M. Angew. Chem. Int. Ed. 2017, 56, 5322-5326. (d) Hashimoto, T.: Nakatsu. H.; Watanabe, S.; Maruoka, K. Org. lett. 2010, 12, 1668-1671. (f) Huang, L.; Wullf, W. D. J. Am. Chem. Soc.2011, 133, 8892-8895.
    15) Feng, J.-J.; Zhang, J. ACS Catal. 2016, 6, 6651−6661.
    16) (a) Degennaro, L.; Trinchera, P.; Luisi, R. Chem. Rev. 2014, 114, 7881−7929. (b) Zeng, X.; Zeng, X.; Xu, Z.; Lu, M.; Zhong, G. Org. Lett. 2009, 11, 3036−3039. (c) Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13100–1310. (d) Hashimoto, T.; Uchiyama, N.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 14380-14381. (e) Bew, S. P.; Carrington, R.; Hughes, D. L.; Liddle, J.; Pesce, P. Adv. Synth. Catal. 2009, 351, 2579–258. (f) Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445−2447. (g) Williams, A. L.; Johnston, J. N. J.Am. Chem. Soc. 2004, 126, 1612−1613.
    17) Wender, P. A.; Strand, D. J. Am. Chem. Soc. 2009, 131, 7528−7529.
    18) Fan, J.; Gao, L.; Wang, Z. Chem. Commun. 2009, 5021−5023.
    19) Pankova, A. S.; Voronin, V. V.; Kuznetsov, M. A. Tetrahedron Lett. 2009, 50, 5990−5993.
    20) Xiao, T.; Peng, P.; Xie, Y.; Wang, Z.-Y.; Zhou, L. Org. Lett., 2015, 17, 4332−4335.
    21) Narode, A. S.; Liu, R.-S. Org. Lett., 2022, 24, 2165−2169.
    22) Du, X.; Yang, S.; Yang, J.; Liu, Y. Chem. Eur. J., 2011, 17, 4981–4985.
    23) Prior cyclization of aldimines 3-1, see: (a) Obika, S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. J. Org. Chem. 2007, 72, 4462-4468. (b) Asao, N.; Yudha S. S.; Nogami, T.; Yamamoto, Y. Angew. Chem. 2005, 117, 5662–5664. (c) Markina, N. A.; Mancuso, R.; Neuenswander, B.; Lushington, G. H.; Larock, R. C. ACS Comb. Sci. 2011, 13, 265–271. (d) Yu, X.; Wu, J. J. Comb. Chem. 2010, 12, 238–244. (e) Ding, Q.; Wu, J. Org. Lett., 2007, 9, 24, 4959-4962. (f) Wang, X.; Qiu, G.; Zhang, L.; Wu, J. Tetrahedron Lett. 2014, 55, 962–964. (g) Sun, W.; Ding, Q.; Sun, X.; Fan, R.; Wu, J. J. Comb. Chem. 2007, 9, 690-694. (h) Yanada, R.; Obika, S.; Kono, H.; Takemoto, Y. Angew. Chem. Int. Ed. 2006, 45, 3822 –3825. (i) Ohtaka, M.; Nakamura, H.; Yamamoto, Y. Tetrahedron Lett. 2004, 45, 7339-7341. (j) Gao, K.; Wu, J. J. Org. Chem. 2007, 72, 8611-8613. (k) Ding, Q.; Wang, B.; Wu, J. Tetrahedron. 2007, 63, 12166–12171. (l) Ye, Y.; Ding, Q.; Wu, J. Tetrahedron. 2008, 64, 1378-1382.
    24) (a) Chen, L.; Chen, K.; Zhu, S. Chem. 2018, 4, 1208−1262. (b) Lopez, F.; Mascareñas, J. L. Beilstein J. Org. Chem. 2011, 7, 1075−1094. (c) Patil, N. T.; Yamamoto, Y. ArkiVoc. 2007, 6-19. (d) Pandit, Y. B.; Liu, R.-S. Org. Lett. 2022, 24, 548-553. (e) Hsu, Y.-C.; Ting, C.-M.; Liu, R.-S. J. Am. Chem. Soc. 2009, 131, 2090–2091. (f) Shu, X.-Z.; Zhao, S.-C.; Ji, K.-G.; Zheng, Z.-J.; Liu, X.-Y.; Liang, Y.-M. Eur. J. Org. Chem. 2009, 117–122. (g) Asao, N.; Kasahara, T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2003, 42, 3504–3506; Angew. Chem. 2003, 115, 3628–3630. (h) Hildebrandt, D.; Hüggenberg, W.; Kanthak, M.; Plöger, T.; Müller, I. M.; Dyker, G. Chem. Commun. 2006, 2260–2261. (i) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921–10925. (j) Asao, N.; Sato, K. Org. Lett. 2006, 8, 5361-5363. (k) Asao, N.; Aikawa, H. J. Org. Chem. 2006, 71, 5249–5253. (l) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 7458–7459. (m) Yao, X.; Li, C.-J. Org. Lett. 2006, 8, 1953–1955. (n) Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 764–765. (o) Raj, A. S. K.; Liu, R.-S. Angew. Chem. Int. Ed. 2019, 58, 10980-10984.
    25) Selected examples of benzazepine, see: (a) Velasco-Rubio, Á.; Varela, J. A.; Carlos Saá, Adv. Synth. Catal. 2020, 362, 4861– 4875. (b) Yamamoto, Y. Chem. Soc. Rev. 2014, 43, 1575-1600. (c) Claraz, A.; Serpier, F.; Darses, S. ACS Catal. 2017, 7, 3410−3413. (d) Ảlvarez-Perez, A.; G.-Rodríguez, C.; G.-Yebra, C.; Varela, J. A.; Onate, E.; Esteruelas, M. A.; Saá, C. Angew. Chem. 2015, 127, 13555 –13559. (e) Peshkov, V. A.; Pereshivko, O. P.; Donets, P. A.; Mehta, V. P.; Van der Eycken, E. V.; Eur. J. Org. Chem. 2010, 4861–4867. (f) Damsen, H.; Niggemann, M. Eur. J. Org. Chem. 2015, 7880–7883. (g) Donets, P. A.; Van der Eycken, E. V.; Org. Lett. 2007, 9, 16, 3017-3020. (h) Donets, P. A.; Goeman, J. L.; Eycken, J. V. d.; Robeyns, K.; Meervelt, L. V.; Eycken, E. V. V. d. Eur. J. Org. Chem. 2009, 793–796. (i) Tietze, L.; Schiro, H.; Angew. Chem. Int. Ed. Engl. 1997, 36, 1124-1125. (j) Pandey, A. K.; Han, S. H.; Mishra, N. K.; Kang, D.; Lee, S. H.; Chun, R.; Hong, S.; Park, J. S.; Kim, I. S. ACS Catal. 2018, 8, 742−746. (k) Wang, L.; Huang, J.; Peng, S.; Liu, H.; Jiang, X.; Wang, J. Angew. Chem. Int. Ed. 2013, 52, 1768–1772. (l) Vieira, T. O.; Alper, H. Org. Lett. 2008, 10, 485–487.
    26) For Natural Products: (a) Cardama, A. Q.; Kantarjian, H.; Cortes, J. Cancer. December 1, 2009. (b) Hou, F.; Zhang, X.; Zhang, G.; Xie, D.; Chen, P.; Zhang, W.; Jiang, J.; Liang, M.; Wang, G.; Liu, Z.; Geng, R. N. Engl. J. Med. 2006, 354, 131. (c) Gini, A.; Bamberger, J.; Luis-Barrera, J.; Zurro, M.; Mas-Balleste, R.; Alemμn, J.; Manchenoa, O. G. Adv. Synth. Catal. 2016, 358, 4049–4056. (d) Smith, B. M.; Smith, J. M.; Tsai, J. H.; Schultz, J. A.; Gilson, C. A.; Estrada, S. A.; Chen, R. R.; Park, D. M.; Prieto, E. B.; Gallardo, C. S.; Sengupta, D.; Dosa, P. I.; Covel, J. A.; Ren, A.; Webb, R. R.; Beeley, N. R. A.; Martin, M.; Morgan, M.; Espitia, S.; Saldana, H. R.; Bjenning, C.; Whelan, K. T.; Grottick, A. J.; Menzaghi, F.; Thomsen, W. J. J. Med. Chem. 2008, 51, 305–313. (e) Krull, O.; Wunsch, B. Bioorg. Med. Chem. 2004, 12, 1439–1451.
    27) Deposition number 2210043, 2210048, 2210060, (3-3a, 3-4a, 3-4q) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
    28) Selected examples for Lewis-acid catalyzed aziridination, see: (a) Mayer, M. F.; Wang, Q.; Hossain, M. M. Journal of Organometallic Chemistry. 2001, 630, 78–83. (b) Mayer, M. F.; Hossain, M. M.; Journal of Organometallic Chemistry. 2002, 654, 202-209. (c) Mayer, M. F.; Hossain, M. M.; J. Org. Chem. 1998, 63, 6839-6844. (d) Sengupta, S.; Mondal, S. Tetrahedron Letters. 2000, 41 6245-6248. (e) Xie, W.; Fang, J.; Li, J.; Wang, P. G. Tetrahedron. 1999, 55 12929-12938. (f) Casarrubios, L.; Perez, J. A.; Brookhart, M.; Templeton, J. L. J. Org. Chem. 1996, 61, 8358-8359. (g) Xue, Z.; Mazumdar, A.; Hope-Weeks L. J.; Mayer, M. F. Tetrahedron Letters. 2008, 49, 4601-4603. (h) Rasmussen, K. G.; Juhl, K.; Hazell, R. G.; Jørgensen, K. A.; J. Chem. Soc., Perkin Trans.2. 1998, 2, 1347-1350. (i) Rasmussen, K. G.; Jørgensen, K. A. J. Chem. Soc., Chem., Commun. 1995, 1401-1402. (j) Reddy, B. V. S.; Rao, M. S.; Reddy, P. N.; Yadav, J. S.; Tetrahedron Letters. 2003, 44, 5275-5278. (k) Pellicciari, R.; Amori, L.; Kuznetsova, N.; Zlotskyb, S.; Gioiello, A. Tetrahedron Letters. 2007, 48, 4911-4914. (l) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. J. Org. Chem. 2013, 78, 5142−5152. (m) Rasmussen, K. G; Jørgensen, K. A. J. Chem. Soc., Perkin Trans.1. 1997, 1287-1291.
    29) For recent reviews on Au catalysis, see: (a) Li, Z.; Brouwer, C.; He, C.; Chem. Rev. 2008, 108, 3239-3265. (b) Hashmi, A. S. K.; Chem. Rev. 2007, 107, 3180−3211. (c) Hashmi, A. S. K.; Hutchings, G. J. Angew.Chem. Int. Ed. 2006, 45, 7896–7936; Angew. Chem. 2006, 118, 8064–810. (d) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395–3442. (e) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127−2198. (f) Furstner, A.; Davies, P. W.; Angew. Chem. Int. Ed. 2007, 46, 3410–3449. (g) Hashmi, A. S. K.; Acc. Chem. Res. 2014, 47, 864–876. (h) Asiria, A. M.; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 4471–450. (i) Mack, D. J.; Njardarson, J. T. ACS Catal. 2013, 3, 272−286. (j) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028−9072. (k) Jiménez-Núñnez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326–3350. (l) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351–3378. (m) Reyes, R. L.; Iwai, T.; Sawamura, M. Chem. Rev. 2021, 121, 8926-8947.
    30) (a) Bartolo, N. D.; Read, J. A.; Valentín, E. M.; Woerpel, K. A. Chem. Rev. 2020, 120, 1513−1619. (b) Jurczak, J.; Goibiowski, A. Chem. Rev. 1989, 89. 149-164. (c) Deraet, X.; Woller, T.; Lommel, R. V.; Proft, F. D.; Verniest, G.; Alonso, M. ChemistryOpen. 2019, 8, 788–806. (d) Karjalainen, O. K.; Koskinen, A. M. P. Org. Biomol. Chem., 2012, 10, 4311-4326. (e) Abrahams, I.; Motevalli, M.; Robinson, A. J.; Wyatt, P. B. Tetrahedon.1994, 50, 12755-12772. (f) Devine, P.; Reilly, M.; Oh, T. Tetrahedon Latters. 1993, 34, 5827-3830. (g) France, S.; Shah, M. H.; Weatherwax, A.; Wack, H.; Roth, J. P.; Lectka, T. J. Am. Chem. Soc. 2005, 127, 1206-1215.
    31) (a) Luo, H.; Liang, R.; Chen, L.; Jiang, H.; Zhu, S. Org. Chem. Front. 2018, 5, 1160–1164. (b) Chaudhari, T. Y.; Ginotra, Urvashi, S. K.; Yadav, P.; Kumar, G.; Tandon, V. Org. Biomol. Chem. 2016, 14, 9896–9906. (d) See ref. 23b.
    32) a) Kardile, R. D.; Liu, R.-S. Org. Lett. 2019, 21, 6452−6456. (b) Toma, T.; Shimokawa, J.; Fukuyama, T. Org. Lett. 2007, 9, 3195–3197. (d) Mao, H.; Lin, A.; Shi, Y.; Mao, Z.; Zhu, X.; Li, W.; Hu, H.; Cheng, Y.; Zhu, C. Angew. Chem. Int., Ed. 2013, 52, 6288–6292. (e) Hodgson, D. M.; Angrish, D. Chem. Eur. J. 2007, 13, 3470 – 3479. (f) Carminati, D. M.; Intrieri, D.; Caselli, A.; Le Gac, S.; Boitrel, B.; Toma, L.; Legnani, L.; Gallo, E. Chem. Eur. J. 2016, 22, 13599-13612. (g) Mandour, H. S. A.; Nakagawa, Y.; Tone, M.; Inoue, H.; Otog, N.; Fujisawa, I.; Chanthamath, S.; Iwasa, S. Beilstein, J. Org. Chem. 2019, 15, 357–363.

    QR CODE