研究生: |
古欣文 Ku, Hsin-Wen |
---|---|
論文名稱: |
適用於寬頻多輸入輸出毫米波系統之混合式預編碼演算法 Hybrid Precoding and Combining Algorithms for Wideband Millimeter Wave MIMO Systems |
指導教授: |
黃元豪
Huang, Yuan-Hao |
口試委員: |
蔡佩芸
Tsai, Pei-Yun 陳喬恩 Chen, Chiao-En 伍紹勳 Wu, Sau-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | 毫米波 、混合預編碼 、多輸入多輸出 、寬頻 |
外文關鍵詞: | mmWave, Hybrid Precoding, MIMO, Wideband |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多輸入輸出毫米波系統與大規模陣列天線是能為下一世代行動通訊提供高吞吐量的重要技術。為了減少因大量天線的射頻鏈與數位類比轉換器所造成的高成本和功耗,在毫米波多輸入輸出系統中,數位類比混合式預編碼是具潛力架構之一。然而毫米波的通訊系統期望能夠操作在有頻率選擇性的寬帶通道中。在這篇論文中,我們提出了一個基於正交分頻多工技術且適用於寬頻多輸入輸出毫米波系統中不具反矩陣運算的低複雜度混合式預編碼演算法。因為在傳送端與接收端的反快速傅立葉轉換和快速傅立葉轉換處理器,所以在這個具頻率選擇性通道中要解的問題是找到一個所有子載波共有的射頻預編碼與每個子載波各自擁有的基頻預編碼。在運算射頻預編碼中,採用了連續干擾消除的概念去解決了反矩陣計算的問題。最後模擬結果顯示本論文所提出的演算法與論文內提及的演算法相比較,可以減少運算複雜度,並且效能損失是可忽略的。
Millimeter wave (mmWave) multiple-input and multiple-output (MIMO) system with large-scale antenna arrays is a key technique to provide high throughput for the next generation communication systems. To reduce the high cost and power consumption of radio frequency (RF) chains and data converters, the hybrid analog/digital precoding is the potential candidate for mmWave MIMO systems. However, the communication of mmWave systems is expected to employ on broadband channel with frequency selectivity. In this thesis, we propose a matrix-inversion-bypass hybrid precoding and combining algorithm for mmWave MIMO system with orthogonal frequency division multiplexing (OFDM) modulation. Due to the inverse fast Fourier transform (IFFT) and fast Fourier transform (FFT) processors in the transmitter and receiver, the problem of hybrid precoding for frequency selective channel is to find the shared common RF precoder for all subcarriers and individual baseband precoders for each subcarrier. By adopting the concept of the successive interference cancellation, the problem of the matrix inversion can be solved in calculating the RF precoder. The simulations show that the proposed algorithm can reduce the computational complexity with negligible performance loss comparing to the mentioned work in this thesis.
[1] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Communications Magazine, vol. 49, no. 6, pp. 101-107, 2011.
[2] S. K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP Journal on Wireless Communications and Networking, vol. 2007, no. 1, pp. 1-10, 2006.
[3] S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “Mimo for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both?” IEEE Communications Magazine, vol. 52, no. 12, pp. 110-121, 2014.
[4] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave mimo systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, 2014.
[5] Y.-Y. Lee, C.-H.Wang, and Y.-H. Huang, “A hybrid rf/baseband precoding processor based on parallel-index-selection matrix-inversion-bypass simultaneous orthogonal matching pursuit for millimeter wave mimo systems,” IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 305-317, 2015.
[6] W.-L. Hung, C.-H. Chen, C.-C. Liao, C.-R. Tsai, and A.-Y. A. Wu, “Low-complexity hybrid precoding algorithm based on orthogonal beamforming codebook,” in 2015 IEEE Workshop on Signal Processing Systems (SiPS). IEEE, 2015, pp. 1-5.
[7] R. Mndez-Rial, C. Rusu, N. Gonzlez-Prelcic, and R. W. Heath, “Dictionary-free hybrid precoders and combiners for mmwave mimo systems,” in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), pp. 151-155, 2015.
[8] C.-K. Ho and Y.-H. Huang, “Low complexity hybrid precoding algorithm using multiple orthogonal codebook matrices and local search,” Master's thesis, National Tsing Hua University, Taiwan, 2016.
[9] C. Rusu, R. Mendez-Rial, N. Gonzalez-Prelcicy, and R. W. Heath, “Low complexity hybrid sparse precoding and combining in millimeter wave mimo systems,” 2015 IEEE International Conference on Communications (ICC), pp. 1340-1345, 2015.
[10] X. Gao, L. Dai, S. Han, C.-L. I, and R. W. Heath, “Energy-efficient hybrid analog and digital precoding for mmwave mimo systems with large antenna arrays,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 998-1009, 2016.
[11] H.-Y. Cheng and Y.-H. Huang, “Scalable parallel data-stream hybrid precoding processor for mmwave mimo systems,” Master's thesis, National Tsing Hua University, Taiwan, 2017.
[12] J. Lee and Y. H. Lee, “Af relaying for millimeter wave communication systems with hybrid rf/baseband mimo processing,” 2014 IEEE International Conference on Communications (ICC), pp. 5838-5842, 2014.
[13] X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave mimo systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 485-500, 2016.
[14] F. Sohrabi and W. Yu, “Hybrid analog and digital beamforming for mmwave ofdm large-scale antenna arrays,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1432-1443, 2017.
[15] Q. Spencer, B. Jeffs, M. Jensen, and A. Swindlehurst, “Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel,” Selected Areas in Communications, IEEE Journal on, vol. 18, no. 3, pp. 347-360, 2000.
[16] P. F. M. Smulders and L. Correia, “Characterisation of propagation in 60 ghz radio channels,” Electronics Communication Engineering Journal, vol. 9, no. 2, pp. 73-80, 1997.
[17] G. H. Golub and C. F. V. Loan, Matrix Computations. Baltimore, USA: JHU Press, 2012.
[18] Z. Pi, “Optimal transmitter beamforming with per-antenna power constraints,” in 2012 IEEE International Conference on Communications (ICC). IEEE, 2012, pp. 3779-3784.
[19] G. Huang and L. Wang, “High-speed signal reconstruction with orthogonal matching pursuit via matrix inversion bypass,” 2012 IEEE Workshop on Signal Processing Systems, pp. 191-196, 2012.
[20] A.H.Bentbib and A.Kanber, “Block Power Method for SVD Decomposition,” in An. St. Univ. Ovidius Constanta, vol. 23(2), 2015, pp. 45-58.
[21] B. Hassib, “An Efficient Square-Root Algorithm for BLAST,” vol. 2, no. 4, pp. II737-II740, 2000.
[22] Z.-F. Yang and Y.-H. Huang, “Design and implementation of generalized eigenvalue decomposition processor for leakage-based precoding for ieee 802.11ac in multi-user mimo system,” Master's thesis, National Tsing Hua University, Taiwan, 2017.
[23] H.Stark and J.W.Woods, “Matrix computations,” in Edition Prentice Hall, 2002.
[24] C.-Z. Zhan, Y.-L. Chen, and A.-Y. Wu, “Iterative superlinear-convergence svd beamforming algorithm and vlsi architecture for mimo-ofdm systems,” IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 3264-3277, 2012.