簡易檢索 / 詳目顯示

研究生: 蔡仲庭
Tsai, Chung-Ting
論文名稱: 基於類神經方法之寫作改錯與建議
Quality and Correction Feedback for Essay based on Neural Approach
指導教授: 張俊盛
Chang, Jason S.
口試委員: 馬偉雲
Ma, Wei-Yun
陳浩然
Chen, Hao-Jan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 36
中文關鍵詞: 英文文法偵測英文文法改錯建議類神經網路
外文關鍵詞: Grammatical error detection, Grammatical error suggestion, Neural network
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出一個英文文法改錯的方法,自動學習提供更正建議,以利使用者修改文法錯誤。 在研究路線中,我們分析句子以預測文法錯誤類型,並根據錯誤類型搜索更正建議。 此方法涉及應用類神經方法以訓練文法錯誤檢查模型與自動生成糾正建議。 在執行時,對句子進行偵測與識別後,根據錯誤類別,生成查詢式,檢索並顯示改錯的建議。 我們將該方法應用於註釋語料庫,提出了一個雛型寫作反饋系統,LinggleWrite。 根據我們對文法錯誤檢查模型的評估,此模型在公開資料集表現優於以往的系統。


    We introduce a method for learning to provide writing suggestions on a given English sentence with potential grammatical errors. In our approach, error words in sentence are analyzed to predict the error type, aimed at customizing suggestions according to the error type. The method involves training a neural grammatical error detection (GED) model to detect potential errors in the sentence and then identifying error types, and generating corrective suggestions based on the error type. At run-time, grammatical errors in a sentence are detected, and corrective suggestions are generated and displayed. We present a prototype writing feedback system, LinggleWrite, that applies the method to a corpus annotated with grammatical errors and corrections. Experiments on the publicly released dataset indicates that the proposed GED model outperforms previous work.

    Abstract .......... i Contents .......... iv List of Figures .......... vi List of Tables .......... vii 1 Introduction .......... 1 2 Related Work .......... 5 3 Methodology .......... 9 4 Experimental Setting .......... 19 5 Results and Discussion .......... 27 6 Conclusion and Future Work .......... 31 Appendies .......... 32 Reference .......... 33

    1. Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings for sequence labeling. In Proceedings of the 27th International Conference
    on Computational Linguistics, pages 1638–1649. Association for Computational
    Linguistics, 2018. URL http://aclweb.org/anthology/C18-1139.
    2. Øistein E. Andersen, Helen Yannakoudakis, Fiona Barker, and Tim Parish. Developing and testing a self-assessment and tutoring system. In Proceedings of
    the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 32–41. Association for Computational Linguistics, 2013. URL
    http://aclweb.org/anthology/W13-1704.
    3. Yigal Attali and Jill Burstein. Automated essay scoring with e-rater v.2.0. Journal of Technology, Learning, and Assessment, 2006.
    4. Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp
    Koehn, and Tony Robinson. One billion word benchmark for measuring progress
    in statistical language modeling. Technical report, Google, 2013. URL http:
    //arxiv.org/abs/1312.3005.
    5. Hongbo Chen and Ben He. Automated essay scoring by maximizing humanmachine agreement. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1741–1752. Association for Computational Linguistics, 2013. URL http://aclweb.org/anthology/D13-1180.
    6. Yann N. Dauphin, Harm de Vries, and Yoshua Bengio. Equilibrated adaptive
    learning rates for non-convex optimization. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1,
    NIPS’15, pages 1504–1512, Cambridge, MA, USA, 2015. MIT Press. URL
    http://dl.acm.org/citation.cfm?id=2969239.2969407.
    7. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pretraining of deep bidirectional transformers for language understanding. arXiv
    preprint arXiv:1810.04805, 2018.
    8. Fei Dong and Yue Zhang. Automatic features for essay scoring – an empirical
    study. In Proceedings of the 2016 Conference on Empirical Methods in Natural
    Language Processing, pages 1072–1077. Association for Computational Linguistics, 2016. doi: 10.18653/v1/D16-1115. URL http://aclweb.org/anthology/
    D16-1115.
    9. Fei Dong, Yue Zhang, and Jie Yang. Attention-based recurrent convolutional neural network for automatic essay scoring. In Proceedings of the 21st Conference
    on Computational Natural Language Learning (CoNLL 2017), pages 153–162.
    Association for Computational Linguistics, 2017. doi: 10.18653/v1/K17-1017.
    URL http://aclweb.org/anthology/K17-1017.
    10. Na-Rae Han, Martin Chodorow, and Claudia Leacock. Detecting errors in english article usage by non-native speakers. Nat. Lang. Eng., 12(2):115–129, June 2006. ISSN 1351-3249. doi: 10.1017/S1351324906004190. URL http://dx.doi.org/10.1017/S1351324906004190.
    11. Ekaterina Kochmar and Ted Briscoe. Detecting learner errors in the choice of
    content words using compositional distributional semantics. In Proceedings of
    COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages 1740–1751. Dublin City University and Association
    for Computational Linguistics, 2014. URL http://aclweb.org/anthology/
    C14-1164.
    12. John Lee and Stephanie Seneff. Correcting misuse of verb forms. In Proceedings of ACL-08: HLT, pages 174–182. Association for Computational Linguistics, 2008. URL http://aclweb.org/anthology/P08-1021.
    13. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representations of words and phrases and their compositionality. In
    Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS’13, pages 3111–3119, USA, 2013. Curran Associates Inc. URL http://dl.acm.org/citation.cfm?id=2999792.2999959.
    14. Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word representation. In In EMNLP, 2014
    15. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
    Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL, 2018.
    16. Marek Rei and Anders Søgaard. Jointly learning to label sentences and tokens.
    CoRR, abs/1811.05949, 2018.
    17. Marek Rei and Helen Yannakoudakis. Compositional sequence labeling models for error detection in learner writing. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
    1181–1191. Association for Computational Linguistics, 2016. doi: 10.18653/v1/
    P16-1112. URL http://aclweb.org/anthology/P16-1112.
    18. Kaveh Taghipour and Hwee Tou Ng. A neural approach to automated essay scoring. In Proceedings of the 2016 Conference on Empirical Methods in Natural
    Language Processing, pages 1882–1891. Association for Computational Linguistics, 2016. doi: 10.18653/v1/D16-1193. URL http://aclweb.org/anthology/
    D16-1193.
    19. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
    Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
    need. 2017. URL https://arxiv.org/pdf/1706.03762.pdf.
    20. Torsten Zesch, Michael Wojatzki, and Dirk Scholten-Akoun. Task-independent
    features for automated essay grading. In Proceedings of the Tenth Workshop on
    Innovative Use of NLP for Building Educational Applications, pages 224–232.
    Association for Computational Linguistics, 2015. doi: 10.3115/v1/W15-0626.
    URL http://aclweb.org/anthology/W15-0626.

    QR CODE