簡易檢索 / 詳目顯示

研究生: 許瑩苨
論文名稱: 非線性匿名微分方程組週期解路徑之探討
Numerical Investigation for Periodic Solution Paths of Nonlinear Autonomous Differential Equations
指導教授: 簡國清
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2009
畢業學年度: 97
語文別: 中文
中文關鍵詞: 隱函數定理切線猜測法割線猜測法虛擬弧長延拓法解路徑打靶法轉彎點牛頓迭代法Rung-Kutta積分法
外文關鍵詞: Implicit function theorem, Tangent-predictor method, Secant-predictor method, Pseudo-arclength continuation method, Solution branches, Shooting method, Turning points, Newton’s interative method, Rung-kutta integral formula
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是在探討一非線性匿名微分方程組,在改變參數的情況下,其週期解路徑的變化情形.
    首先,我們利用打靶法及牛頓迭代法找出一固定週期後,再利用此固定週期找出週期解初始值;接著,再以隱函數定理為基礎,運用切線猜測法、割線猜測法及虛擬弧長延拓法等,求得此方程組的週期解路徑.


    The main purpose of this thesis is to investigate bifurcation problems of a system of nonlinear autonomous differential equation. We also investigate the solution structure when the bifurcation parameter changed.
    We first compute period of the model using shooting method, and then compute periodic solutions of the model with known periods. Finally, we figure out periodic solution paths of the model base on implicit function theorem by using tangent-predictor method, secant-predictor method, and pseudo-arclength continuation method.

    第一章 緒論-------------------------------------1 第二章 分歧理論與虛擬弧長延拓法-------------------4 2.1 分歧問題-------------------------------------4 2.2 分歧理論與隱函數定理---------------------------7 2.3 局部延拓法------------------------------------9 2.4虛擬弧長延拓法---------------------------------12 第三章 非線性匿名微分方程組週期解路徑的數值解法-----15 3.1週期的數值解法---------------------------------15 3.2 週期已知的條件下求週期解-----------------------24 3.3 切線猜測法求解分支及初始值---------------------25 3.3.1 Liapunov-Schmidt 降階法-------------------25 3.3.2 選取週期解分支方向及初始值之猜值--------------34 3.4虛擬弧長延拓法求解路徑--------------------------38 3.5 演算法---------------------------------------41 第四章 數值實驗---------------------------------48 4.1 週期解之週期和初始值在固定參數下之變化情形-------49 【實驗一】---------------------------------------49 4.2 不同參數下週期解路徑的變化---------------------52 【實驗二】---------------------------------------53 【實驗三】---------------------------------------65 【實驗四】---------------------------------------77 【實驗五】---------------------------------------90 【實驗六】--------------------------------------102 第五章 結論-----------------------------------112 參考文獻----------------------------------------114

    【1】Allgower, E.L. and Chien, C.S. Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp. 1265-1281,(1986).
    【2】Crandall, M.G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press, pp. 1-35, (1977).
    【3】Crandall, M.G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P.H. Rabinowtiz, Academic Press, New York, (1977).
    【4】Crandall, M.G., and Rabinowitz, P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp. 321-340, (1971).
    【5】Eusebius Doedel and Laurette S. Tuckerman, Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, (1999).
    【6】Golubitsky, Martin Stewart, Ian Schaeffer and David G, Singularities and Groups in Bifurcation Theory, (1988).
    【7】Holodniok, M. and Kubicek, M., DERPER-An algorithm for continuation of periodic solution in Ordinary Differential Equations, J. Comp. Phys. Vol. 55,254-267, (1984).
    【8】Jepson, A.D. and Spence, A., Numerical Methods for Bifurcation Problems, State of the Art in Numerical Analysis, edit bu A. Iserles, MJD Powell, (1987).
    【9】Keller and Herbert Bishop, Lectures on Numerical Methods in Bifurcation Problems, (1988).
    【10】Keller, H.B. and Langford, W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems, Arch. Rational Mech. Anal., 48, pp83-108, (1972).
    【11】Keller, H.B., in “Recent Advances in Numerical Analysis”, Ed. By C. de Boor and G.H. Golub, Academic Press, New York, p. 73,(1978).
    【12】Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, (1983).
    【13】Keller, H.B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, (1987).
    【14】Magnus Kuper, External Forcing in a Glycolytic Model International Series of Numer. Math., Vol. 79, (1987).
    【15】Moiola, Jorge L. Chen and Guanrong, Hopf Bifurcation Analysis: A Frequency Domain Approach, (1996).
    【16】M. Kubicek and M. Marek, Evaluation of limit and bifurcation for algebraic and nonlinear boundary value problems, Appl. Math. Comput, (1979).
    【17】Seydel, R., Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos, (1994).
    【18】陳宏傑,Lorenz模型週期解路徑之分歧問題探討(Numerical Investigation for the Bifurcation Problems of Periodic Solution Paths of Lorenz Model),(2007).
    【19】章筑嫻,半線性橢圓特徵值問題的分歧問題探討(Numerical Investigation for the Bifurcation Problems of Semi-linear Elliptic Eigenvalue Problems),(2006).
    【20】葉雅琪,一個雙核心Brusselator反應模型之倍增週期分歧問題探討(Numerical Investigation for the Periodic Doubling Bifurcation Problems of A Brusselator Reaction Model with Two Cell), (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE