研究生: |
吳思賢 Wu, Sih-Sian |
---|---|
論文名稱: |
對於在布朗及卜瓦松雜訊下經由無線網路的多目標H_2/H_∞自動車導引控制 Multiobjective H_2/H_∞ Autonomous Ground Vehicle Guidance Control via Wireless Network under Wiener and Poisson Noises |
指導教授: |
陳博現
Chen, Bor-Sen |
口試委員: |
李柏坤
黃志良 徐勝均 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 31 |
中文關鍵詞: | 取樣資料控制 、網路控制系統 、多目標H_2/H_∞控制 、非線性隨機系統 、自動車 、路徑追蹤 |
外文關鍵詞: | Sampled-data control, Network control system (NCS), Multiobjective H_2/H_∞ control problem, Nonlinear stochastic jump diffusion system, Autonomous ground vehicle, Path following |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文介紹了經由無線網路的多目標H_2 /H_∞自動車導引控制,可以同時最佳化H_2和H_∞。在現實中,由於道路狀況的變化,GPS的定位偏差或者路徑被阻擋,自動車導引系統總是遭受到連續和不連續的擾動。本研究提出了對於非線性自動車系統的多目標 H_2 /H_∞基於觀測器的導引控制設計,該系統受到網路引起的延遲,封包遺失,連續布朗雜訊和不連續卜瓦松雜訊的影響。其中,提出了一種等效的間接方法來解決複雜的非線性隨機多目標 H_2 /H_∞基於觀測器的導引控制設計問題。為了避免求解多目標 H_2 /H_∞控制問題的Hamilton-Jacobin不等式,採用Takagi-Sugeno模糊模型逼近非線性隨機自動車導引系統。因此,多目標 H_2 /H_∞基於觀測器的導引控制設計問題可以轉換為線性矩陣不等式的多目標問題。由於線性矩陣不等式多目標問題不易於有效求解Pareto最優解,因此應用了多目標進化演算法,用於解決多目標H_2 /H_∞基於觀測器的自動車導引控制問題。最後,給出了智能城市街道自動車輛導引控制的仿真實例,驗證了多目標 H_2 /H_∞基於觀測器的自動車導引控制設計的設計性能。
This study introduces a multiobjective optimal (MO) H_2/H_∞ observer-based guidance control design to achieve the optimal H_2 quadratic guidance and optimal H_∞ robust guidance simultaneous in the nonlinear stochastic autonomous ground vehicle guidance control via wireless network. First, an autonomous ground vehicle guidance system always suffers from continuous and discontinuous fluctuations in the practical perspective due to the change of the road condition, the positioning deviation of the GPS, or something to suddenly keep off. This study proposes a MO H_2/H_∞ observer-based guidance control for the nonlinear autonomous ground vehicle guidance system suffered from network-induced delays, packet dropouts, continuous Wiener noise, and discontinuous Poisson jump noise. An equivalent indirect method is proposed to solve the complex nonlinear stochastic MO H_2/H_∞ observer-based guidance control design problem. In order to avoid solving an Hamilton-Jacobin inequalities (HJIs)-constrained multiobjective optimal problem (MOP) for MO H_2/H_∞ control problem, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear stochastic autonomous ground vehicle guidance system. So that, the HJIs-constrained MOP for MO H_2/H_∞ observer-based guidance control problem can be transformed to a linear matrix inequalities (LMIs)-constrained MOP. Since the LMIs-constrained MOP is not easy to efficiently solve for Pareto optimal solutions, an LMIs-constrained multiobjective evolutionary algorithm (MOEA) is also proposed to solve the MO H_2/H_∞ observer-based guidance control problem of autonomous ground vehicle via wireless network. Finally, a simulation example of autonomous ground vehicle guidance control at the streets in the smart city is given to illustrate the design procedure and performance of the proposed MO H_2/H_∞ autonomous ground vehicle observer-based guidance control design.
[1]Y. Chen, L. Li, Advances in Intelligent Vehicles, New York, NY, USA:Academic, 2014.
[2]M. A. Zakaria, H. Zamzuri, R. Mamat, and S. A. Mazlan, ”A Path Tracking Algorithm Using Future Prediction Control with Spike Detection for an Autonomous Vehicle Robot,” International Journal of Advanced Robotic Systems, vol. 10, p. 309, Aug. 2013.
[3] S. A. Arogeti and N. Berman, ”Path Following of Autonomous Vehicles in the Presence of Sliding Effects,” IEEE Transactions on Vehicular Technology, vol. 61, no. 4, pp. 1481-1492, May 2012.
[4] R. Wang, H. Jing, C. Hu, F. Yan and N. Chen, ”Robust H1 Path Following Control for Autonomous Ground Vehicles With Delay and Data Dropout,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 7, pp. 2042-2050, July 2016.
[5] H. Fang, L. Dou, J. Chen, R. Lenain, B. Thuilot, and P. Martinet, ”Robust anti-sliding control of autonomous vehicles in presence of lateral disturbances,” Control Engineering Practice, vol. 19, pp. 468-478, 2011
[6] M. Choi and S. B. Choi, ”Model Predictive Control for Vehicle Yaw Stability With Practical Concerns,” IEEE Transactions on Vehicular Technology, vol. 63, no. 8, pp. 3539-3548, Oct. 2014.
[7] W. Sun, H. Gao and B. Yao, ”Adaptive Robust Vibration Control of Full-Car Active Suspensions With Electrohydraulic Actuators,” IEEE Transactions on Control Systems Technology, vol. 21, no. 6, pp. 2417-2422, Nov. 2013.
[8] L. Consolini and C. M. Verrelli, ”Learning control in spatial coordinates for the path-following of autonomous vehicles,” Automatica, vol. 50, pp. 1867-1874, July 2014.
[9] R. A. Gupta and M. Y. Chow, ”Networked Control System: Overview and Research Trends,” IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2527-2535, July 2010.
[10] L. Zhang, H. Gao and O. Kaynak, ”Network-Induced Constraints in Networked Control Systems—A Survey,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 403-416, Feb. 2013.
[11] D. Yue, Q. L. Han, and J. Lam, “Network-based robust H1 control of systems with uncertainty,” Automatica, vol. 41, no. 6, pp. 999-1007, Jun. 2005.
[12] F. Yang, Z. Wang, Y. S. Hung and M. Gani, ”H1 control for networked systems with random communication delays,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 511-518, Mar. 2006.
[13] Z. Shuai, H. Zhang, J. Wang, J. Li and M. Ouyang, ”Combined AFS and DYC Control of Four-Wheel-Independent-Drive Electric Vehicles over CAN Network with Time-Varying Delays,” IEEE Transactions on Vehicular Technology, vol. 63, no. 2, pp. 591-602, Feb. 2014.
[14] H. Gao and T. Chen, ”Network-Based H1 Output Tracking Control,” IEEE Transactions on Automatic Control, vol. 53, no. 3, pp. 655-667, April 2008.
[15] X. Jiang, Q. L. Han, S. Liu and A. Xue, ”A New H1 Stabilization Criterion for Networked Control Systems,” IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 1025-1032, May 2008.
[16] Z. Wang, F. Yang, D. W. C. Ho and X. Liu, ”Robust H1 Control for Networked Systems With Random Packet Losses,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 4, pp. 916-924, Aug. 2007.
[17] F. Yang, Z. Wang, D. W. C. Ho and M. Gani, ”Robust H1 Control With Missing Measurements and Time Delays,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1666-1672, Sept. 2007.
[18] J. Qiu, H. Gao and S. X. Ding, ”Recent Advances on Fuzzy-Model-Based Nonlinear Networked Control Systems: A Survey,” IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 1207-1217, Feb. 2016.
[19] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. New York, NY, USA:Wiley, 2001.
[20] H. C. Sung D. W. Kim J. B. Park Y. H. Joo ”Robust digital control of fuzzy systems with parametric uncertainties: LMI-based digital redesign approach,” Fuzzy Sets Sys. vol. 161 pp. 919-933 2010
[21] C. S. Tseng C. K. Hwang ”Fuzzy observer-based fuzzy control design for nonlinear systems with persistent bounded disturbances,” Fuzzy Sets Syst. vol. 158 no. 2 pp. 164-179 Jan. 2007.
[22] W. Liu, C.-C. Lim, P. Shi, and S. Xu, ”Sampled-data fuzzy control for a class of nonlinear systems with missing data and disturbances,” Fuzzy Sets Syst., vol. 306, pp. 63-86, 2017.
[23] X. Jiang, ”On sampled-data fuzzy control design approach for T–S model-based fuzzy systems by using discretization approach,” Information Sciences, vol. 296, pp. 307-314, 2015.
[24] H. Liu and G. Zhou, ”Finite-time sampled-data control for switching T-S fuzzy systems,” Neurocomputing, vol. 166, pp. 294-300, 2015.
[25] B. S. Chen, W. H. Chen and H. L. Wu, ”Robust H2=H1 Global Linearization Filter Design for Nonlinear Stochastic Systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 7, pp. 1441-1454, July 2009.
[26] B. S. Chen and C. F. Wu, ”Robust Scheduling Filter Design for a Class of Nonlinear Stochastic Poisson Signal Systems,” IEEE Transactions on Signal Processing, vol. 63, no. 23, pp. 6245-6257, Dec.1, 2015.
[27] B. Øksendal A. Sulem, Applied Stochastic Control of Jump Diffusions, 2nd ed. Berlin, Germany: Springer, 2007.
[28] F. Hanson, Applied Stochastic Processes and Control for Jump-Diffusions: Modeling Analysis and Computation, 2nd ed. Philadelphia, PA, USA:SIAM, 2007.
[29] F. L. Lewis, L. Xie D. Popa, Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory. Boca Raton, FL, USA: CRC Press, 2008.
[30] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete Time Case, vol. 139. New York, NY, USA: Academic, 1978.
[31] R. F. Stengel, Stochastic Optimal Control: Theory and Application. Hoboken, NJ, USA: Wiley 1986.
[32] C. Scherer, P. Gahinet and M. Chilali, ”Multiobjective output-feedback control via LMI optimization,” IEEE Transactions on Automatic Control, vol. 42, no. 7, pp. 896-911, Jul 1997.
[33] R. Skjetne and T. I. Fossen, ”Nonlinear maneuvering and control of ships,” MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), Honolulu, HI, 2001, pp. 1808-1815 vol.3.
[34] S. H. ˙ Zak, Systems and Control, New York, NY, USA: Oxford Univ. Press, 2003.
[35] E. Fridman, ”A refined input delay approach to sampled-data control,” Automatica, vol. 46, pp. 421-427, 2010.
[36] E. Fridman, A. Seuret, and J.-P. Richard, ”Robust sampled-data stabilization of linear systems: an input delay approach,” Automatica, vol. 40, pp. 1441-1446, 2004.
[37] S. Boyd, L. El Ghaoui E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA, USA: SIAM 1994.
[38] B. S. Chen, H. C. Lee and C. F. Wu, ”Pareto Optimal Filter Design for Nonlinear Stochastic Fuzzy Systems via Multiobjective H2=H1 Optimization,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 2, pp. 387-399, April 2015.
[39] B. Chen, C.-S. Tseng, and H.-J. Uang, ”Mixed H2=H1 Fuzzy Output Feedback Control Design for Nonlinear Dynamic Systems: An LMI Approach,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 3, pp. 279-265, June 2000.
[40] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, 1st ed. Chichester, U.K.:Wiley, 2001.
[41] A. Abraham L. C. Jain R. Goldberg, Evolutionary Multiobjective Optimization: Theoretical Advances and Applications. New York, NY, USA: Springer, 2005.
[42] K. Tanaka, T. Ikeda and H. O. Wang, ”Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 2, pp. 250-265, May 1998.
[43] M. Sugeno and K. Tanaka, ”Successive identification of a fuzzy model and its applications to prediction of a complex system,” Fuzzy Sets and Systems, vol. 42, pp. 315-334, Aug. 1991.