研究生: |
王丞浩 Chen-Hao Wang |
---|---|
論文名稱: |
高效能直接甲醇燃料電池 High Performance of Direct Methanol Fuel Cell |
指導教授: |
施漢章
Han-Chang Shih 陳貴賢 Kuei-Hsien Chen 林麗瓊 Li-Chyong Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 1冊(140面) |
中文關鍵詞: | 燃料電池 、奈米探管 、甲醇 、質子交換膜 |
外文關鍵詞: | Fuel cell, Carbon nanotube, methanol, proton exchange membrane |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
直接甲醇燃料電池(Direct methanol fuel cell, DMFC)是一種將甲醇燃料與氧氣利用電化學方式產生電能的能源產生裝置,被認為能應用在個人式行動電子產品、各種的感測器甚至是交通工具上。然而,由於甲醇的催化效率緩慢,以及甲醇會由陽極滲透過質子交換膜至陰極造成陰極毒化,都將導致直接甲醇燃料電池效率下降。此外,高含量的貴金屬觸媒成本亦不利直接甲醇燃料電池的商品化。本論文提出兩個方向以解決這些問題:一、製作高效率陽極以提升甲醇催化效率並且降低貴金屬觸媒使用量;二、在質子交換膜覆蓋一層甲醇阻擋層以降低甲醇滲透率。
為了製作一個高效率並且使用低含量貴金屬觸媒的直接甲醇燃料電池,吾人將奈米碳管直接成長在碳布上,並將白金和釕觸媒濺鍍在直接成長的奈米碳管上作為陽極。奈米碳管的合成是使用微波輔助電漿化學沈積法以CH4/H2/N2的混合氣體做為合成原料。利用電化學的循環伏安法與阻抗分析在1 mM Fe(CN)63-/4-的環境下測量,吾人發現直接成長奈米碳管電極擁有較快的電子轉移與較低的阻抗。由於在製備奈米碳管時有摻入氮,吾人使用掃瞄式電子顯微鏡和穿透式電子顯微鏡觀察到這些摻入氮的地方可以形成活性點使得白金和釕等觸媒可以均勻地被分佈在奈米碳管上並可進一步製作膜電極組。膜電極組是一種陽極/膜/陰極的三明治結構。使用低含量白金和釕觸媒(0.4 mg cm-2)的奈米碳管電極作為陽極,和白金觸媒(3.0 mg cm-2)作為陰極,並且將Nafion 117夾在中間的膜電極組,其表現優於一般傳統使用高含量貴金屬觸媒陽極的膜電極組。從微結構分析,使用奈米碳管電極的膜電極組擁有薄和均勻的觸媒層,並且觸媒層與質子交換膜和氣體擴散層擁有良好的界面連續性。
為了減緩甲醇由陽極滲透至陰極速率,吾人選用化學穩定且電傳導良好的質子化polyaniline(PANI)覆蓋在Nafion 117(N117)形成一個擁有甲醇阻擋層的複合膜(PANI/N117)。覆蓋在N117的PANI厚度約為100 nm且其電導約為13.24 S cm-1。與N117作比較,在室溫下PANI/N117減少了41%的甲醇滲透率,證明後者具有降低甲醇滲透的能力。使用N117和PANI/N117作為的膜電極組操作在1,2,4,6和8 M的甲醇環境與60 oC的操作溫度,吾人發現兩者有截然不同的現象。使用N117的膜電極組,其輸出功率隨著甲醇濃度增加而降低,這是由於甲醇滲透至陰極導致陰極觸媒毒化所致。使用PANI/N117的膜電極組,其輸出功率隨著甲醇濃度增加而增加;最大的輸出功率在6 M可以達到70 mW cm-2。此外,吾人亦發現當電池操作在1 M到 6 M的甲醇濃度時,使用PANI/N117的膜電極組可以比N117的膜電極組有效地降低甲醇滲透率,使得前者在甲醇濃度增加時表現良好。由於PANI/N117在高濃度的甲醇操作中表現良好,吾人認為其將適合在直接甲醇燃料電池在長時間的操作。
The direct methanol fuel cell (DMFC) is an attractive and promising power generator, which generates electricity by an electrochemical redox reaction of methanol and oxygen, enabling a wide range of applications from small sensors, portable electronic devices, to automobiles. However, the slow methanol electro-oxidation and severe methanol crossover undermine the DMFC performance. On the other hand, a high loading of noble metal electrocatalysts make it too expensive for commercialization. In this thesis, two solutions are proposed to tackle these issues: an efficient anode with a low loading of noble metal electrocatalysts to enhance the methanol electro-oxidation; a proton exchange membrane coated with a methanol blocking layer to reduce the methanol crossover.
Firstly, the study demonstrated the feasibility of a high-performance membrane-electrode-assembly (MEA), with low electrocatalyst loading on carbon nanotubes (CNTs), which were grown directly on carbon cloth as an anode. The direct growth of CNTs was realized by microwave plasma-enhanced chemical vapor deposition using CH4/H2/N2 as precursors. The cyclic voltammetry and electrochemical impedance measurements with 1 mM Fe(CN)63-/4- redox reaction reveal a fast electron transport and a low resistance on the direct grown CNT. The electrocatalysts, platinum and ruthenium, were coated on CNTs by sputtering technique to form the Pt-Ru/CNTs-CC anode (Pt-Ru/CNTs-CC). The MEA, the sandwiched structure which comprises 0.4 mg cm-2 Pt-Ru/CNTs-CC as the anode, 3.0 mg cm-2 Pt black as the cathode and Nafion 117 membrane at the center, performs very well in a direct methanol fuel cell (DMFC) test. The micro-structural MEA analysis shows that the thin electrocatalyst layer is uniform, with good interfacial continuity between membrane and the gas diffusion layer.
Secondly, protonated polyaniline (PANI), a stable and electrically conducting polymer, was directly polymerized on a Nafion 117 membrane (N117), forming a composite membrane, to act as a methanol blocking layer (PANI/N117), whose was evaluated to reduce the methanol crossover in the DMFC. A PANI layer coated on the N117 has a thickness of 100 nm, with an electrical conductivity of about 13.24 S cm-1. The methanol permeability of the PANI/N117 is 41% less than that of the N117 at room temperature, suggesting that the PANI/N117 can effectively reduce the methanol crossover in the DMFC. The MEAs using the conventional N117 (N117-based MEA) and the new developed PANI/N117 (PANI/N117-based MEA) were compared to the feeding of 1, 2, 4, 6 and 8 M methanol at 60 oC. The output power of the N117-based MEA is reduced at higher methanol concentration, which is due to the methanol crossover of the N117. However, the PANI/N117-based MEA exhibits higher output power at higher methanol concentration. The maximum power density of the PANI/N117-based MEA is 70 mW cm-2 at 6 M methanol solution. This value is double that of the N117-based MEA under identical conditions. This work also suggests that the methanol-crossover rate of the PANI/N117-based MEA is about 60% lower than that of the N117-based MEA from 1 M to 6 M methanol solutions. The PANI/N117-based MEA performs well at elevated methanol concentration, suggesting the potential for long-term operation of small-scale DMFCs.
[1] J. Larminie, A. Dicks, “Fuel cell systems explained, 2nd edition.” John Wiely & Sons Inc., NY, USA, (2003).
[2] T. R. Ralph, M. P. Hogarth, “Catalysis for low temperature fuel cells. Part I: The cathode challenges.” Platinum Metals Rev., 46 (2002) 3-14.
[3] T. R. Ralph, M. P. Hogarth, “Catalysis for low temperature fuel cells. Part II: The anode challenges.” Platinum Metals Rev., 46 (2002) 117-135.
[4] T. R. Ralph, M. P. Hogarth, “Catalysis for low temperature fuel cells. Part III: Challenges for the direct methanol fuel cell.” Platinum Metals Rev., 46 (2002) 146-164.
[5] K. Kinoshita, “Carbon. Electrochemical and physicochemical properties.” John Wiely & Sons Inc., NY, USA, (1988).
[6] “Fuel cell handbook, 6th edition.” EG&G Technical Services Inc., Virginia, USA, (2002).
[7] H.-G. Haubold, Th. Vad, H. Jungbluth, P. Hiller, “Nano structure of NAFION: a SAXS study.” Electrochim. Acta 46 (2001) 1559-1563.
[8] Thomas A. Zawodzinski, Jr. Michal Neeman, Laurel O. Sillerud, Shimshon Gottesfeld, “Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes.” J. Phys. Chem. 95 (1991) 6040-6044.
[9] A. Oedegaard, C. Hebling, A. Schmitz, S. M□ller-Holst, R. Tunold, “Influence of diffusion layer properties on low temperature DMFC.” J. Power Sources 127 (2004) 187-196.
[10] P. Argyropoulos, K. Scott, W.M. Taama, “Gas evolution and power performance in direct methanol fuel cells.” J. Appl. Electrochem. 29 (1999) 661-669.
[11] G. Hoogers eds., “Fuel cell technology handbook.” CRC Press, Boca Raton, USA, (2003).
[12] N.A. Hampson, M.J. Wilars, “The methanol-air fuel cell: A selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes” J. Power Sources 4 (1979) 191-201.
[13] T. Iwasita, “Electrocatalysis of methanol oxidation.” Electrochim. Acta 47 (2002) 3663.
[14] E.A Batista, G.R.P. Malpass, A.J. Motheo, T. Iwasita, “New insight into the pathways of methanol oxidation.” Electrochem. Commun. 5 (2003) 843-846.
[15] Hamnett A. and Kennedy B.J., “Bimetallic carbon supported anodes for the direct methanol-air fuel cell.” Electrochim. Acta 33 (1998) 1613-1618.
[16] Hamnett A., “Mechanism and electrocatalysis in the direct methanol fuel cell.” Catalysis Today 38 (1997) 445-457.
[17] Hubert A. Gasteiger, Nenad Markovic, Philip N. Ross Jr, Elton J. Cairns, “Electro-oxidation of small organic molecules on well-characterized Pt-Ru alloys.” Electrochim. Acta 39 (1994) 1825-1832.
[18] Krzysztof Franaszczuk, Jerzy Sobkowski, “The influence of ruthenium adatoms on the oxidation of chemisorbed species of methanol on a platinum electrode by a radiochemical method.” J. Electroanal. Chem. 327 (1992) 235-245.
[19] E. Ticanelli, J. G. Beery, M. T. Paffett, S. Gottesfeld, “An electrochemical, ellipsometric, and surface science investigation of the PtRu bulk alloy surface.” J. Electroanal. Chem. 258 (1989) 61-77.
[20] C. Lim, C. Y. Wang, “Development of high-power electrodes for a liquid-feed direct methanol fuel cell.” J. Power Sources 113 (2003) 145-150.
[21] C. Y. Chen, P. Yang, “Performance of an air-breathing direct methanol fuel cell.” J. Power Sources 123 (2003) 37-42.
[22] Thorsten Schultz, Su Zhou, Kai Sundmacher, “Current status of and recent developments in the direct methanol fuel cell.” Chem. Eng. Technol. 24 (2001) 1223-1233.
[23] A. Heinzel, V.M. Barragan, “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells.” J. Power Sources 84 (1999) 70-74.
[24] Thomas Schaffer, Thomas Tschinder, Viktor Hacker, Jurgen O. Besenhard, “Determination of methanol diffusion and electroosmotic drag coefficients in proton-exchange-membranes for DMFC.” J. Power Sources 153 (2006) 210-216.
[25] B. Smitha, S. Sridhar, A.A. Khan, “Solid polymer electrolyte membranes for fuel cell applications: A review.” J. Membr. Sci. 259 (2005) 10-26.
[26] L. Jiang, G. Sun, X. Zhao, Z. Zhou, S. Yan, S. Tang, G. Wang, B. Zhou, Q. Xin, “Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells.” Electrochim. Acta 50 (2005) 2371-2376.
[27] M. Neergat, D. Leveratto, U. Stimming, “Catalysts for Direct Methanol Fuel Cells.” Fuel Cells 2 (2002) 25-30.
[28] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes.” Nature 386 (1997) 377-379.
[29] Guangli Che, Brinda B. Lakshmi, Ellen R. Fisher ,Charles R. Martin, “Carbon nanotubule membranes for electrochemical energy storage and production.” Nature 393 (1998) 346-349.
[30] G. X. Wang, Jung-ho Ahn, Jane Yao, Matthew Lindsay, H. K. Liu, S. X. Dou, “Preparation and characterization of carbon nanotubes for energy storage.” J. Power Sources 119–121 (2003) 16-23.
[31] [19] K. H. An, W. S. Kim, Y. S. Park, J.-M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee ,Y. H. Lee, “Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes.” Adv. Funct. Mater. 11 (2001) 387-392.
[32] Junsong Guo, Gongquan Sun, Qi Wang, Guoxiong Wang, Zhenhua Zhou, Shuihua Tang, Luhua Jiang, Bing Zhou, Qin Xin, “Carbon nanofibers supported Pt–Ru electrocatalysts for direct methanol fuel cells.” Carbon 44 (2006) 152-157.
[33] Gang Wu, Yong-Sheng Chen, Bo-Qing Xu, “Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation.” Electrochem. Commun. 7 (2005) 1237-1243.
[34] G. Girishkumar, Matthew Rettker, Robert Underhile, David Binz, K. Vinodgopal, Paul McGinn, Prashant Kamat, “Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.” Langmuir 21 (2005) 8487-8494.
[35] Chan Kim, Yong Jung Kim, Yoong Am Kim, Takashi Yanagisawa, Ki Chul Park, Morinobu Endoa, Mildred S. Dresselhaus, “High performance of cup-stacked-type carbon nanotubes as a Pt–Ru catalyst support for fuel cell application.” J. App. Phys. 96 (2004) 5903-5905.
[36] Dao-Jun Guo, Hu-Lin Li, “High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles.” J. Electroanal. Chem. 573 (2004) 197-202.
[37] Cheng Wang, Mahesh Waje, Xin Wang, Jason M. Tang, Robert C. Haddon, Yushan Yan, “Proton exchange membrane fuel cells with carbon nanotube based electrodes.” Nano Lett. 4 (2004) 345-348.
[38] Morinobu Endo, Yoong Ahm Kim, Masay Ezaka, Koji Osada, Takashi Yanagisawa, Takuya Hayashi, Marucio Terrones, Mildred S. Dresselhaus, “High performance of cup-stacked-type carbon nanotubes as a Pt–Ru catalyst support for fuel cell applications.” Nano Lett. 3 (2003) 723-726.
[39] Eve S. Steigerwalt, Gregg A. Deluga, C. M. Lukehart, “Pt-Ru/Carbon fiber nanocomposites: synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance.” J. Phys. Chem. B 106 (2002) 760-766.
[40] Carol A. Bessel, Kate Laubernds, Nelly M. Rodriguez, R. Terry K. Baker, “Graphite nanofibers as an electrode for fuel cell applications.” J. Phys. Chem. B 105 (2001) 1115-1118.
[41] Ming-Chi Tsai, Tsung-Kuang Yeh, Chuen-Horng Tsai, “An improved electrodeposition technique for preparing platinum and platinum–ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation.” Electrochem. Commun. 8 (2006) 1445-1452.
[42] L.-C. Chen, C.-Y. Wen, C.-H. Liang, W.-K. Hong, K.-J. Chen, H.-C. Cheng, C.-S. Shen, C.-T. Wu, K.-H. Chen, “Controlling steps during early stages of the aligned growth of carbon nanotubes using microwave plasma enhanced chemical vapor deposition.” Adv. Funct. Mater. 12 (2002) 687-692.
[43] L. H. Chan, K. H. Hong, D. Q. Xiao, T. C. Lin, S. H. Lai, W. J. Hsieh, H. C. Shih, “Resolution of the binding configuration in nitrogen-doped carbon nanotubes.” Phys. Rev. B 70 (2004) 125408-1-125408-7.
[44] L. H. Chan, K. H. Hong, D. Q. Xiao, W. J. Hsieh, S. H. Lai, H. C. Shih, T. C. Lin, F. S. Shieu, K. J. Chen, H. C. Cheng, “Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes.” App. Phys. Lett. 82 (2003) 4334-4336.
[45] Nam Seo Kim, Yun Tack Lee, Jeunghee Park, Jae Bum Han, Young Sang Choi, Seung Yeol Choi, Jaebum Choo, Gang Ho Lee, “Vertically Aligned Carbon Nanotubes Grown by Pyrolysis of Iron, Cobalt, and Nickel Phthalocyanines.” J. Phys Chem. B 107 (2003) 9249-9255.
[46] B. Rajesh, V. Karthik, S. Karthikeyan, K. Ravindranathan Thampi, J.-M. Bonard, B. Viswanathan, “Pt–WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells.” Fuel 81 (2002) 2177-2190.
[47] Craig E. Banks, Trevor J. Davies, Gregory G. Wildgoose, Richard G. Compton, “Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites.” Chem. Commun. 7 (2005) 829-841.
[48] J. M. Nugent, K. S. V. Santhanam, A. Rubio, P. M. Ajayan, “Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes.” Nano Lett. 1 (2001) 87-91.
[49] Leonor Chico, Lorin X. Benedict, Steven G. Louie, Marvin L. Cohen, “Quantum conductance of carbon nanotubes with defects.” Phys. Rev. B 54 (1996) 2600-2606.
[50] Yu.V. Pleskov, Yu.E. Evstefeeva, M.D. Krotova, A.V. Laptev, “Synthetic semiconductor diamond electrodes: a study of electrochemical behavior of boron-doped single crystals grown at a high temperature and high pressure.” Electrochim. Acta 44 (1999) 3361-3366.
[51] Evgenij Barsoukov, J. Ross Macdonald, ed., Impedance Spectroscopy Theory, Experiment, and Applications, John Wiley & Sons Inc. Press, Hoboken, New Jersey, 2005, pp. 430-436.
[52] Hansan Liu, Chaojie Song, Lei Zhang, Jiujun Zhang, Haijiang Wang, David P. Wilkinson, “A review of anode catalysis in the direct methanol fuel cell.” J. Power Sources 155 (2006) 95-110.
[53] M. Watanabe, S. Motoo, “Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms.” J. Electroanal. Chem. 60 (1975) 267-273.
[54] T. Frelink, W. Visscher, J.A.R. van Veen, “On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt.” Surf. Sci. 335 (1995) 353-360.
[55] Chia-Liang Sun, Li-Chyong Chen, Ming-Chuan Su, Lu-Sheng Hong, Oliver Chyan, Chien-Yu Hsu, Kuei-Hsien Chen, Te-Fu Chang, Li Chang, “Ultrafine platinum nanoparticles uniformly dispersed on arrayed CNx nanotubes with high electrochemical activity.” Chem. Mater. 17 (2005) 3749-3753.
[56] E. Antolini, F. Cardellini, L. Giorgi, E. Passalacqua, “Effect of Me (Pt+Ru) content in Me/C catalysts on PtRu alloy formation: An XRD analysis.” J. Mater. Sci. Lett. 19 (2000) 2099-2103.
[57] Ramasamy Manoharan, John B. Goodenough, “Methanol oxidation in acid on ordered NiTi.” J. Mater. Chem. 2 (1992) 875-887.
[58] Young-Min Kim, Kyung-Won Park, Jong-Ho Choi, In-Su Park, Yung-Eun Sung, “A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC.” Electrochem. Commun. 5 (2003) 571-574.
[59] Won Choon Choi, Ju Dam Kim, Seong Ihl Woo, “Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell.” J. Power Sources 96 (2001) 411-414.
[60] P. Dimitrova, K.A. Friedrich, B. Vogt, U. Stimming, “Transport properties of ionomer composite membranes for direct methanol fuel cells.” J. Electroanal. Chem. 532 (2002) 215-225.
[61] Y.-I. Park, J.-D. Kim, M. Nagai, “Increase of proton conductivity in amorphous phosphate–Nafion membranes.” J. Mater. Sci. Lett. 19 (2000) 1621-1623.
[62] S.P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, K. Richau, “Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells.” J. Membr. Sci. 203 (2002) 215-225.
[63] J. S. Wainright, J. -T. Wang, D. Weng, R. F. Savinell, M. Litt, “Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte.” J. Electrochem. Soc. 142 (1995) L121-L123.
[64] Youngtai Woo, Se Young Oh, Yong Soo Kang, Bumsuk Jung, “Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell.” J. Membr. Sci. 220 (2003) 31-45.
[65] Vincenzo Tricoli, Francesco Nannetti, “Zeolite-Nafion composites as ion conducting membrane materials.” Electrochim. Acta 48 (2003) 2625-2633.
[66] Masanobu Matsuguchi, Heisuke Takahashi, “Methanol permeability and proton conductivity of a semi-interpenetrating polymer networks (IPNs) membrane composed of Nafion□ and cross-linked DVB.” J. Membr. Sci. 281 (2006) 707-715.
[67] Shine Joseph, J.C. McClure, R. Chianelli, P. Pich, P.J. Sebastian, “Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC).” Int. J. Hydrogen Energy 30 (2005) 1339-1344.
[68] Hussein Gharibi, Mohammad Zhiani, Rasol Abdullah Mirzaie, Mehdi Kheirmand, Ali Akbar Entezami, Karim Kakaei, Masumeh Javaheri, “Investigation of polyaniline impregnation on the performance of gas diffusion electrode (GDE) in PEMFC using binary of Nafion and polyaniline nanofiber.” J. Power Sources 157 (2006) 703-708.
[69] Jong-Ho Choi, Young-Min Kim, Jae-Suk Lee, Ki-Yun Cho, Ho-Young Jung, Jung-Ki Park, In-Su Park, Yung-Eun Sung, “A polyaniline supported PtRu nanocomposite anode and a Pd-impregnated nanocomposite Nafion membrane for DMFCs.” Solid State Ionics 176 (2005) 3031-3034.
[70] Xianfeng Li, Dongju Chen, Dan Xua, Chengji Zhao, Zhe Wang, Hui Lu, Hui Na, “SPEEKK/polyaniline (PANI) composite membranes for direct methanol fuel cell usages.” J. Membrane Sci. 275 (2006) 134-140.
[71] Takahiro Shimizu, Tomomo Naruhashi, Toshiyuki Momma, Tetsuya Osaka, “Preparation and methanol permeability of polyaniline/Nafion composite membrane.” Electrochem. 70 (2002) 991-993.
[72] T. K. Na, H. S. Kim, J. H. Park, T. H. Lee, “A fabrication of PANI/Nafion composite membrane for methanol crossover prevention in DMFCs.” 205th Meeting of the Electrochemical Society, MA 2004-01, 2004, p. 349.
[73] Yongku Kang, Dong Wook Kim, Jeongdon Kwon, Sunmi Park, Jong-Ho Choi, Yung-Eun Sung, “Nafion modified by self-assembled polyaniline multilayers for liquid feed DMFC” 206th Meeting of the Electrochemical Society, MA 2004-02, 2004, p. 2033.
[74] J. Stejskal, R. G. Gilbert, “Polyaniline. Preparation of a conducting polymer.” IUPAC, Pure Appl. Chem. 74 (2002) 857-867.
[75] K.-H. Lubert, L. Dunsch, “The influence of protons on the impedance of polyaniline films.” Electrochim. Acta 43 (1998) 813-822.
[76] S. P. Armes, J. F. Miller, “Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulphate.” Synth. Met. 22 (1988) 385-393.
[77] Jaroslav Stejskal, Paval Kratochvil, “Polyaniline dispersions. 5. Poly(vinyl aclcohol) and poly(N-vinylpyrrolidone) as steric stabilizers.” Langmuir 12 (1996) 3389-3392.
[78] Jaroslav Stejskal, Irina Sapurina, “Polyaniline: thin films and colloidal dispersions.” IUPAC, Pure Appl. Chem. 77 (2005) 815-826.
[79] Andrea Riede, Martin Helmstedt, Irina Sapurina, Jaroslav Stejskal, “In-situ polymerized polyaniline films.” J. Colloid Interface Sci. 248 (2002) 413-418.
[80] Zhigang Qi, Arthur Kaufman, “Open circuit voltage and methanol crossover in DMFCs.” J. Power Sources 110 (2002) 177-185.
[81] X. Ren, T. E. Springer, S. Gottesfeld, “Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance.” J. Electrochem. Soc. 147 (2000) 92-98.
[82] C. Barthet, M. Guglielmi, “Mixed electronic and ionic conductors: a new route to Nafion□-doped polyaniline.” J. Electroanal. Chem. 388 (1995) 35-44.
[83] C. Barthet, M. Guglielmi, “Aspects of the conducting properties of Nafion doped polyaniline.” Electrochim. Acta 41 (1996) 2791-2798.
[84] K. Lee, J.-D. Nam, “Optimum ionic conductivity and diffusion coefficient of ion-exchange membranes at high methanol feed concentrations in a direct methanol fuel cell.” J. Power Sources 157 (2006) 201-206.
[85] X. Li, E.P.L. Roberts, S.M. Holmes, “Evaluation of composite membranes for direct methanol fuel cells.” J. Power Sources 154 (2006) 115-123.
[86] A.A. Kulikovsky, “A method for analysis of DMFC performance curves.” Electrochem. Commun. 5 (2003) 1030-1036.
[87] Z. H. Wang, C. Y. Wang, “Mathematical modeling of liquid-feed direct methanol fuel cells.” J. Electrochem. Soc. 150 (2003) A508-A519.
Kai Sundmacher, Keith Scott, “Direct methanol polymer electrolyte fuel cell: Analysis of charge and mass transfer in the vapour-liquid-solid system.” Chem. Eng. Sci. 54 (1999) 2927-2936.