簡易檢索 / 詳目顯示

研究生: 陳文泰
Chen, Wen-Tai
論文名稱: 電流應力下熱電模組銲點界面反應之研究
Effect of electric current stressing on interfacial reactions at soldered junctions of thermoelectric modules
指導教授: 廖建能
Liao, Chien-Neng
口試委員: 甘炯耀
Gan, Jon-Yiew
廖建能
Liao, Chien-Neng
饒達仁
Yao, Da-Jeng
吳子嘉
Wu, Albert-T.
朱旭山
Chu, Hsu-Shen
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 109
中文關鍵詞: 熱電銲料反應介金屬化合物
外文關鍵詞: Thermoelectrics, Soldering, Intermetallic compounds
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著綠色能源的發展,強調潔淨、安全、高效能的熱電材料因應而生,電源產生器以及熱電致冷器為其應用產品。將成對的P型與N型熱電材料以銲料與金屬導線Cu進行連接,並在元件上下兩端外加陶瓷基板以保護元件結構,當中銲料選用Sn-3Ag-05Cu,組裝成熱電致冷器。
    本研究探討在熱電材料與銲料間之反應,因元件在運作過程中,由於Peltier effect會在元件兩端形成不對稱的溫度分佈,即冷端與熱端,且當中又有高電流的通過,熱電材料與金屬接點的完整性就顯得非常重要,它將影響元件的效能及壽命。當元件在通入700A/cm2的電流密度下,發現P-type熱電材料與銲料交接熱端處,大量生成SnTe化合物,且因銲料的反應而在接點處產生大尺寸的孔洞(voids),進而使元件毀壞。
    在熱電材料與金屬接點界面上,Ni為其擴散阻障層,可防止Te快速與Sn反應,生成SnTe化合物。在通電測試後可發現在冷端處的Ni保持相當完整,而在熱端處,因電流方向在N-type、P-type熱電材料處不同,在N-type端電子流方向由Ni擴散阻障層往銲錫流,P-type端電子流方向由銲錫往Ni擴散阻障層流,造成P-type熱端處的Sn易穿透Ni層,而與P-type (Bi,Sb)2Te3生成SnTe化合物。
    通電後之試片,在SnTe化合物上會有SbSn化合物凸起物生成,因Sn/Te反應偶中是由SnTe及Sn相混和,而Sb、Bi元素亦會溶進Sn相形成固溶體,電流使SbSn化合物析出在SnTe化合物上。由文獻中可知Te跟Sb元素由 “hole wind”朝向銲料接點,而Sn元素由 “electron wind”驅動力。實驗結果顯示:SnTe化合物的成長,主要來自於電流誘導的原子擴散,而不是濃度梯度所造成,在200°C估算的DZ*為10-8–10-9 cm2/s,和文獻上201°C電流下,Sn擴散進SnTe-Te化合物層的數值1.5×10-8 cm2/s相近。
    另一反應偶實驗,在Sn/P-type/Sn試片上,發現通電流清況下介金屬化合物(IMC)的厚度比經熱處理的試片厚,主要是因為Sn與Te的反應非常快速,且通電方向更促進它們之間的反應。由界面標記(Marker)實驗,我們可以得知Sn在SnTe內,不管通電流或是熱處理,都是主要擴散元素,在Sn與P-type界面處,有薄薄的一層Sb2Sn3化合物生成,在之後才是SnTe化合物,而當通電流後,陰極處會有非常多的SbSn化合物生成,熱處理也會生成,只是數量少得多,而陽極處幾乎沒有Sb2Sn3化合物生成。其原因主要為Te跟Sb元素係由 “hole wind”朝向銲料接點,而Sn元素則由 “electron wind”驅動,造成不同的IMC厚度所致。
    熱處理所生成的SnTe化合物,其活化能為138 KJ/mole,在熱處理140oC情況下的flux為 9*1014 (atoms/cm2□s),而通電流情況下的flux則為9.8*1014 (atoms/cm2□s),依此所計算得之DZ*值為4.27*10-8 cm2/s,比文獻上142°C電流下,Sn擴散進SnTe-Te化合物的數值3.5×10-9 cm2/s大一點。


    As the quest for green energy continues, thermoelectric materials that are clean, safe, and highly-efficient become available for, as are the subsequent thermoelectric generators and coolers on the market. N- and P-type pellets are fixed by soldering to copper conductor and sandwiched between two ceramic plates for structural protection. Sn-3Ag-05Cu is often the solder used for commercial thermoelectric coolers.
    This research discusses in depth the reaction between solder and thermoelectric material. Since thermoelectric devices are subjected to high electric current, the presence of uneven temperature or in other words the hot and cold regions caused by Peltier effect will make the integrity of thermoelectrics/metal junctions extremely important as the lifetime and performance of the device rely heavily on it. When the device is subjected to a current density of 700A/cm2, the creation of SnTe and the sequential formation of extensive voids at the interface of solder and P-type thermoelectric elements could lead to device failure.
    At such interface, nickel diffusion barrier is deposited to prevent the formation of SnTe by reaction between Sn and Te. The structural integrity of this nickel barrier remains intact at the cold regions after electrical current stressing. However, at the hot regions, whether it is at N-type junction where the electron current passes from nickel barrier to solder, or it is at P-type junction where the electron current passes from the solder to nickel barrier, the nickel barrier is depleted as Sn reacts with (Bi,Sb)2Te3 to form SnTe intermetallic compounds (IMCs).
    After the reaction couples were subjected to electric sintering, extrusion of SbSn was found on SnTe. Since the reaction layer was a mixture of SnTe and Sn, Sb an Bi elements were dissolved in Sn by forming a solid solution. Other researchers have shown that Te and Sb elements are susceptible to the influence of a hole wind effect and Sn element is influenced by the electron wind force. Experimental results have shown that the formation of SnTe was not caused by concentration gradient, but rather by EM-induced atomic diffusion. The calculated DZ* at 200 oC was 10-8–10-9 cm2/s, which was very closed to the value 1.5×10-8 cm2/s found for the reaction between Sn and Te under electrical stressing.
    Electrical stressing of Sn/P-type/Sn reaction couple resulted in much thicker IMC layer compared to the thickness obtained with thermal annealing. The rapid reaction between Sn and Te was facilitated by electrical current. From the mark-line experiments, it was found that Sn was the dominant diffusing species in SnTe for both electrical stressing and thermal annealing. At the interface of Sn and P-type thermoelectric element, a thin SbSn layer was found, followed by SnTe IMCs. After electrical stressing, large quantity of Sb2Sn3 IMCs was found at cathode; such quantity was drastically reduced with thermal annealing. On the contrary, Sb2Sn3 was not observed at anode for both electrical and thermal treatments. The difference in IMC thickness was that Te and Sb were pushed toward solder by the hole wind effect, which coincided with Sn element being pushed by the electron wind effect.
    The calculated activation energy for the thermal formation of SnTe was 138 KJ/mole and the flux was 9*1014 (atoms/cm2□s) at 140 oC. The flux under electrical stressing was 9.8*1014 (atoms/cm2□s), and the resulting calculated DZ* obtained was 4.27*10-8 cm2/s. This value was slightly higher than the literature reported value of 3.5×10-9 cm2/s, which was obtained for the diffusion of Sn into SnTe-Te compound under electrical stressing at 142°C.

    摘要 I Abstract IV 誌謝 VI Contents VII List of Figures IX List of Tables XII Chapter 1 Introduction 13 1.1 Introduction and background 13 1.1.1 The development of sustainable energy 13 1.1.2 A promising solution -- Thermoelectrics 13 1.2 Thermoelectric module 18 1.2.1 Bismuth telluride based materials 18 1.2.2 Ceramic plates 19 1.2.3 Metallic conductors 20 1.2.4 Solders 20 1.3 Soldering and Intermetallic compounds 24 1.4 Motivation 25 Chapter 2 Literature review 28 2.1 Electromigration 28 2.2 Intermetallics on reliability of thermoelectric modules 33 2.3 Approaches to improving reliability of thermoelectric modules 37 2.3.1 Diffusion barrier 37 2.3.2 Solder alloy recipe 40 2.4 Reaction couples 41 2.4.1 Sn/Te reaction couple 41 2.4.2 Sn-Ag/Te reaction couple 43 2.4.3 Sn-Bi/Te reaction couple 44 2.4.4 Sn-Cu/Te reaction couple 45 2.4.5 Sn-Sb/Te reaction couple 45 Chapter 3 Experimental procedure 47 3.1 Sample preparation 47 3.1.1 Basic designs of thermoelectric cooling module 47 3.1.2 Preparation of (Bi,Sb)2Te3 thermoelectric 48 3.1.3 Thermal and electrical treatments of Sn/P-type thermoelectrics/Sn 48 3.2 Sample analysis 49 3.2.1 Temperature Distribution Analysis with Thermal Infrared Microscopy 49 3.2.2 Microstructure analysis 51 3.2.3 XRD structural analysis 52 Chapter 4 Thermal annealing and electrical stressing of thermoelectric modules 54 4.1 Temperature measurement of thermoelectric modules with IR scope 54 4.2 Electrical stressing of thermoelectric modules 57 4.3 Thermal annealing of thermoelectric modules 64 4.4 Summary 69 Chapter 5 Thermal and electrical treatments of Sn/P-type thermoelectrics /Sn reaction couple 71 5.1 Temperature measurement of Sn/P-type thermoelectrics/Sn reaction couple with IR scope 71 5.2 Reflow conditions for Sn/Te/Sn、Sn/N-type thermoelectrics/Sn、Sn/P-type thermoelectrics/Sn reaction couples 76 5.3 Electrical stressing of Sn/P-type thermoelectrics/Sn 84 5.4 Thermal Annealing of Sn/P-type thermoelectrics/Sn structure 93 5.5 Summary 99 Chapter 6 Conclusions 100 6.1 Conclusions 100 6.2 Future prospects 102 References 103 Publication List 109

    [1] H. J. Goldsmid, Thermoelectric refrigeration (Pion Ltd., London, 1986).
    [2] G. L. Bennett, Space Power 8, 259 (1989).
    [3] D. M. Rowe, Marine Technology Society Journal 27, 43 (1993).
    [4] P. K. Bansal and A. Martin, International Journal of Energy Research 24, 93 (2000).
    [5] H. Watanabe, Proceedings of the 17th International Conference on Thermoelectrics (ICT'98), Nagoya, Japan, 1998, p. 486.
    [6] T. M. Ritzer, Proceedings of the 18th International Conference on Thermoelectrics (ICT'99), Baltimore, MD , USA, 1999, p. 432.
    [7] H. J. Goldsmid, CRC Handbook of Thermoelectrics (CRC Press Inc., Florida, 1995).
    [8] L. E. Bell, Science 321, 1457 (2008).
    [9] J. H. Cheng, C. K. Liu, R. M. Tain, and C. K. Yu, 6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics Matsushima, Miyagi, Japan, 2005, p. 6.
    [10] G. Min and D. M. Rowe, Solid-State Electronics 43, 923 (1999).
    [11] G. Min and D. M. Rowe, Applied Energy 83, 133 (2006).
    [12] K. Uemura, Journal of Thermoelectricity 3, 7 (2002).
    [13] W. Wang, F. L. Jia, Q. H. Huang, and J. Z. Zhang, Microelectronic Engineering 77, 223 (2005).
    [14] L. Michalski, K. Eckersdorf, J. Kucharski, and J. McGhee, Temperature measurement in industrial appliances (John Wiley & Sons, Chichester, UK, 2002).
    [15] L. A. Fisk, Science 309, 2016 (2005).
    [16] F. D. Winter, G. Stapfer, and E. Medina, Aerospace and Electronic Systems Magazine, IEEE 15, 5 (2000).
    [17] M. Strasser, R. Aigner, C. Lauterbach, T. F. Sturm, M. Franosh, and G. Wachutka, TRANSDUCERS'03, The 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Boston, USA, 2003, p. 45.
    [18] M. Kishi, H. Nemoto, T. Hamao, M. Yamamoto, S. Sudou, M. Mandai, and S. Yamamoto, Proceedings of the 18th International conference on thermoelectrics, Baltimore, MD, USA, 1999, p. 301.
    [19] D. T. Crane, Proceedings of the 9th Diesel Engine Emissions Reduction (DEER) Conference, Newport, Rhode Island, USA, 2003, p. 1.
    [20] D. S. Sumida and T. Y. Fan, Optics Letters 20, 2384 (1995).
    [21] C. T. Elliot, The 4th International Conference on Advanced Infrared Detectors and Systems, London , UK, 1990, p. 61.
    [22] G. Maltezos, M. Johnston, and A. Scherer, Applied Physics Letters 87, 1541051 (2005).
    [23] S. Goktun, Energy Conversion and Management 36, 1197 (1995).
    [24] J. Winkler, V. Aute, B. Yang, and R. Radermacher, Proceedings of 11th International Refrigeration and Air Conditioning Conference, West Lafayette, USA, 2006, p. 911.
    [25] B. Yang, H. Ahuja, and T. N. Tran, HVAC&R Research 14, 635 (2008).
    [26] T. J. Seebeck, Abhandlungen der Deut Schen Akademie der Wissenshafften zu Berlin, 265 (1823).
    [27] J. C. Peltier, Ann. Chim. Phys 56, 371 (1834).
    [28] W. Thomson, Proc. R. Soc. Edinburgh 16, 541 (1849).
    [29] H. J. Goldsmid and R. W. Douglas, British Journal of Applied Physics 5, 386 (1954).
    [30] C. M. Cortes and R. G. Hunsperger, IEEE Transactions on Electron Devices 27, 521 (1980).
    [31] Y. S. Ju and U. Ghoshal, Journal of Applied Physics 88, 4135 (2000).
    [32] G. Min and D. M. Rowe, Energy Conversion and Management 41, 163 (2000).
    [33] C. Shafai and M. J. Brett, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 15, 2798 (1997).
    [34] T. S. Shilliday, Journal of Applied Physics 28, 1035 (1957).
    [35] H. J. Goldsmid, A. R. Sheard, and D. A. Wright, British Journal of Applied Physics 9, 365 (1958).
    [36] H. J. Goldsmid, British Journal of Applied Physics 11, 209 (1960).
    [37] C. Wood, Reports on Progress in Physics 51, 459 (1988).
    [38] I. H. Kim, Materials Letters 43, 221 (2000).
    [39] T. Caillat, M. Carle, P. Pierrat, H. Scherrer, and S. Scherrer, Journal of Physics and Chemistry of Solids 53, 1121 (1992).
    [40] J. Jiang, L. D. Chen, S. Q. Bai, Q. Yao, and Q. Wang, Journal of Crystal Growth 277, 258 (2005).
    [41] O. Yamashita, S. Tomiyoshi, and K. Makita, Journal of Applied Physics 93, 368 (2003).
    [42] M. H. C. Li, A. Al-Refaie, and C. Y. Yang, IEEE Transactions on Electronics Packaging Manufacturing 31, 126 (2008).
    [43] G. F. Wang and T. Cagin, Physical Review B 76, 0752011 (2007).
    [44] C. Y. Liu, H. K. Kim, K. N. Tu, and P. A. Totta, Applied Physics Letters 69, 4014 (1996).
    [45] H. K. Kim, K. N. Tu, and P. A. Totta, Applied Physics Letters 68, 2204 (1996).
    [46] T. D. Alieva, B. S. Barkhalov, and D. S. Abdinov, Inorganic Materials 31, 178 (1995).
    [47] C. N. Liao and C. H. Lee, Journal of Materials Research 23, 3303 (2008).
    [48] C. N. Liao and Y. C. Huang, Journal of Materials Research 25, 391 (2010).
    [49] J. H. Lau, Solder Joint Reliability: Theory and Application (Van Nostrand Reinhold, NY, 1991).
    [50] G. A. Rinne, Microelectronics Reliability 43, 1975 (2003).
    [51] K. Hasezaki, A. Yamada, H. Tsukuda, and M. Araoka, Materials Transactions Jim 37, 1224 (1996).
    [52] Y. Hori and D. Kusano, Proceedings of the 22nd International Conference on Thermoelectrics (ICT'03), La Grande Motte, France 2003, p. 602.
    [53] T. A. Corser, Proceedings of the 41st Electronic Components and Technology Conference, Atlanta, GA 1991, p. 150.
    [54] Y. Hori, D. Kusano, T. Ito, and K. Izumi, Proceedings of the 18th International Conference on Thermoelectrics (ICT'99), Baltimore, USA, 1999, p. 328
    [55] J. H. Kiely, D. V. Morgan, and D. M. Rowe, Semiconductor Science and Technology 9, 1722 (1994).
    [56] Z. M. Liu, X. L. Wang, X. W. Liu, W. Y. Quan, S. F. Sun, S. C. Ye, and J. W. Lui, Proceedings of the 16th International Conference on Thermoelectrics (ICT'97), Dresden, Germany, 1997, p. 708
    [57] T. M. Ritzer, P. G. Lau, and A. D. Bogard, Proceedings of the 16th International Conference on Thermoelectrics (ICT'97), Dresden, Germany, 1997, p. 619.
    [58] M. Gerardin, Compte Rendu 53, 727 (1961).
    [59] H. B. Huntington, Journal of Physics and Chemistry of Solids 29, 1641 (1968).
    [60] R. S. Sorbello, Journal of Physics and Chemistry of Solids 34, 937 (1973).
    [61] H. B. Huntington and A. R. Grone, Journal of Physics and Chemistry of Solids 20, 76 (1961).
    [62] K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic thin film science for electrical engineers and materials scientists (Macmillan, New York, 1992).
    [63] Y. L. Chang and W. C. Wang, Proceedings of SEM XI Congress on Experimental and Applied Mechanics, Orlando, Florida, USA, 2008, p. 162.
    [64] K. A. Moores, Y. K. Joshi, and G. Miller, Proceedings of the 18th International Conference on Thermoelectrics (ICT'99), Baltimore, Maryland USA, 1999, p. 31.
    [65] K. Hasezaki, H. Tsukuda, A. Yamada, and S. Nakajima, Materials Transactions Jim 38, 1022 (1997).
    [66] C. E. Ho, Y. M. Chen, and C. R. Kao, Journal of Electronic Materials 28, 1231 (1999).
    [67] K. N. Tu, Acta Metallurgica 21, 347 (1973).
    [68] K. N. Tu, Materials Chemistry and Physics 46, 217 (1996).
    [69] K. N. Tu and R. D. Thompson, Acta Metallurgica 30, 947 (1982).
    [70] Y. C. Chan, A. C. K. So, and J. K. L. Lai, Materials Science and Engineering B-Solid State Materials for Advanced Technology 55, 5 (1998).
    [71] A. A. Liu, H. K. Kim, K. N. Tu, and P. A. Totta, Journal of Applied Physics 80, 2774 (1996).
    [72] O. L. Mengali and M. R. Seiler, Advanced Energy Conversion 2, 59 (1962).
    [73] R. J. Buist and S. J. Roman, Proceedings of the 18th International Conference on Thermoelectrics (ICT'99), Baltimore, Maryland USA, 1999, p. 249.
    [74] Y. C. Lan, D. Z. Wang, G. Chen, and Z. F. Ren, Applied Physics Letters 92, 3 (2008).
    [75] R. P. Gupta, O. D. Iyore, K. Xiong, J. B. White, K. Cho, H. N. Alshareef, and B. E. Gnade, Electrochemical and Solid State Letters 12, H395 (2009).
    [76] S. W. Chen, C. M. Chen, and W. C. Liu, Journal of Electronic Materials 27, 1193 (1998).
    [77] M. Yahatz and J. Harper, in U.S. patent 5817188 (Melcor Corporation, U.S.A., 1998), p. 6.
    [78] S. W. Chen and C. N. Chiu, Scripta Materialia 56, 97 (2007).
    [79] C. N. Chiu, C. H. Wang, and S. W. Chen, Journal of Electronic Materials 37, 40 (2008).
    [80] C. N. Liao, C. P. Chung, and W. T. Chen, Journal of Materials Research 20, 3425 (2005).
    [81] C. N. Liao, C. H. Lee, and W. T. Chen, Journal of Alloys and Compounds 509, 5142 (2011).
    [82] P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phase, ASM International (Materials Park, OH, 1991).
    [83] T. Hahn, International Tables for Crystallography, 3rd ed. (KAP, Boston, 1992).
    [84] P. Gonzalez, J. A. Agapito, and D. Pardo, Journal of Physics C-Solid State Physics 19, 3619 (1986).
    [85] H. Scherrer, G. Pineau, and S. Scherrer, Physics Letters A 75, 118 (1979).
    [86] P. H. Sun and M. Ohring, Journal of Applied Physics 47, 478 (1976).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE