簡易檢索 / 詳目顯示

研究生: 邱雅君
Ya-Chun Chiu
論文名稱: 同值點定理、推廣型F-s-KKM定理及其應用
Coincidence Theorems, Generalized F-s-KKM Theorems and Their Applications
指導教授: 張東輝
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2007
畢業學年度: 96
語文別: 英文
中文關鍵詞: FC空間F-s-KKM(X,Y,Z)同值點定理推廣型F-sKKM定理變分不等式
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 設X是一個非空集合,Y是一個非空FC空間,Z是一個拓樸空間,G屬於F-s-KKM(X,Y,Z)。在某些假設條件之下,我們證得G的一些同值點定理。我們也證明了一些推廣型F-s-KKM(X,Y,Z)定理,並利用這些推廣型F-s-KKM(X,Y,Z)定理證明一些推廣型變分不等式的存在性定理。本文的結果推廣了許多學者的研究結果。


    CONTENTS 1. INTRODUCTION--------------------------------------------1 2. PRELIMINARIES-------------------------------------------3 3.MAIN RESULTS---------------------------------------------8 4. APPLICATIONS-------------------------------------------19 5.REFERENCES----------------------------------------------21

    REFERENCES

    [1] Q. H. Ansari, A. Idzik, and J. C. Yao, Coincidence and fixed point theorems with applications, Topol. Methods Nonlinear Anal. 15(2000) 191-202.
    [2] H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, Points fixes et coincidences pour les functions multivoques II, C. R. Acad. Sci. Paris Ser. I 295(1982) 381-388.
    [3] K. C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, 1989.
    [4] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991) 208-233.
    [5] S. S. Chang, B. S. Lee, X. Wu, Y. J. Cho, and G. M. Lee, On the generalized quasivariational inequality problems, J. Math. Anal. Appl. 203(1996) 686-711.
    [6] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996) 224-235.
    [7] P. Deguire and M. Lassonde, Familles selectantes, Topol. Methods Nonlinear Anal. 5(1995) 261-269.
    [8] P. Deguire, K. K. Tan, and G. X. Z. Yuan, The study of maximal elements, fixed point for -majorized mappings and their applications to minimax and variational inequalities in product topological spaces, Nonlinear Anal. 37(1999) 933-951.
    [9] X. P. Ding, Best approximation and coincidence theorems, J. Sichuan Normal Univ. Nat. Sci. 18(1995) 21-29.
    [10] X. P. Ding, Coincidence theorems in topological spaces and their applications, applied. Math. Lett. 12(1999) 99-105.
    [11] X. P. Ding, Existence of solutions for quasi-equilibrium problems in noncompact topological spaces, Comput. Math. Appl. 39(2000) 13-21.
    [12] X. P. Ding, Maximal element theorems in product and generalized games, J. Math. Anal. Appl. 305(2005) 29-42.
    [13] X. P. Ding, The generalized game and system of generalized vector quasi-equilibrium problems in locally -umiform spaces, Nonlinear Anal., in press.
    [14] X. P. Ding and T. M. Ding, KKM type theorems and generalized vector equilibrium problems in noncompact , J. Math. Anal. Appl. 331(2007) 1230-1245.
    [15] X. P. Ding and J. Y. Park, Fixed points and generalized vector equilibrium problems in generalized convex spaces, Indian J. Pure Appl. Math. 34(6)(2003) 973-990.
    [16] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961) 305-310.
    [17] M. Fang and N. J. Huang, KKM type theorems with applications to generalized vector equilibrium problems in , Nonlinear Anal., in press.
    [18] A. Granas and F. C. Liu, Coincidence for set valued maps and inequalities, J. Math. Anal. Appl. 165(1986) 119-148.
    [19] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929) 132-137.
    [20] Y. L. Lee, G-S-KKM theorem and its applications, graduate Institute of Mathematics and Science, NHCTC, Hsin Chu, Taiwan.(2003).
    [21] F. J. Liu, On a form of KKM principle and supinfsup inequalities of von Neumann and Ky Fan type, J. Math. Anal. Appl. 155(1991) 420-436.
    [22] L. J. Lin, Q. H. Ansari, and J. Y. Wu, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems, J. Optim. Theory Appl. 117(1)(2003) 121-137.
    [23] L. J. Lin and H. I. Chen, Coincidence theorems for family of multimaps and their applications to equilibrium problems, J. Abstr. Anal. 5(2003) 295-305.
    [24] L. J. Lin, System of coincidence theorems with applications, J. Math. Anal. Appl. 285(2003) 408-418.
    [25] L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with applications to the existence of equilibria, J. Optim. Theory Appl. 123(1)(2004) 105-122.
    [26] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97(1983) 151-201.
    [27] Y. J. Lin and G. Tina, Minimax inequalities equivalent to the Fan-Knaster- Kuratowski-Mazurkiewicz theorem, Appl. Math. Optim. 28(1993) 173-179.
    [28] J. von Neumann, Uber ein okonomsiches Gleichungssystem und eine Verallgemeinering des Browerschen Fixpunktsatzes, Ergeb. Math. Kolloq. 8(1937) 73-83.
    [29] S. Park, Foundations of the KKM theory via coincidences of composites of upper semi-continuous maps, J. Korean Math. Soc. 31(1994) 164-176.
    [30] S. Park and H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197(1996) 173-187.
    [31] S. Park and H. Kim, Functions of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209(1997) 551-571.
    [32] N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991) 187-195.
    [33]G. S. Tang, Q. B. Zhang and C. Z. Cheng, mapping, intersection theorems and minimax inequalities in , J. Math. Anal. Appl. 334(2007) 1481-1491.
    [34] G. Q. Tina, Generalized KKM theorem, minimax inequalities and their applications, J. Optim. Theory Appl. 83(1994) 375-389.
    [35] G. Tina and J. Zhou, Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization, J. Math. Econom. 24(1995) 281-303.
    [36] Z. T. Yu and L. J. Lin, Continuous selection and fixed point theorems, Nonlinear Anal. 52(2003) 445-453.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE