簡易檢索 / 詳目顯示

研究生: 葉哲儒
Yeh, Che-Ju
論文名稱: 應用於三維反及閘式快閃記憶體之低漣漪電壓電荷幫浦系統設計
Small Ripple Charge Pump System Design for 3D NAND FLASH Memory
指導教授: 張孟凡
Chang, Meng-Fan
口試委員: 洪浩喬
Hao-Chiao Hong
邱瀝毅
Lih-Yih Chiou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 71
中文關鍵詞: 快閃記憶體電荷幫浦漣漪電壓
外文關鍵詞: Flash Memory, Charge Pump, Ripple Voltage
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的半導體記憶體種類繁雜,反及閘型快閃記憶體卻有著其重要的角色扮演。由於其陣列的排列方式,反及閘型快閃記憶體可以達到極高的密度,這在當今可攜式電子產品蓬勃發展、大量資料存取應用中,是有著不可取代且重要的設計考量。並且因為其容量大,因此佔整個晶片非常大的面積,如果可以降低反及閘型快閃記憶體的製造成本,即可大幅增加競爭力。
    在目前的系統應用晶片中,內嵌式的反及閘型快閃記憶體需要高電壓使電子進入懸浮閘極來完成〝寫入〞的機制,而電荷幫浦則普遍地用在晶片內部以產生一個比供應電源更高的正電壓或比零更低的負電壓。然而,因為電荷幫浦產生的高電壓會有〝漣漪〞的現象,會在目標電壓上下的震動,造成反及閘型快閃記憶體在〝寫入〞機制時的垂直電場強度改變,影響到反及閘型快閃記憶體〝寫入〞的電子數量,因此對記憶體元件來說,邏輯1和邏輯0的差異性會變小,或者是,造成〝寫入〞程度不準的問題,進而造成記憶體資料存取錯誤。
    我們提出一電荷幫浦輸出偵測機制,當輸出電壓的漣漪電壓大到某個程度時,會經由一回授電路來降低電荷幫補的幫浦能力,這樣既能保持電荷幫浦原來的啟動時間,亦能降低穩態時的電荷幫浦的漣漪電壓。


    指導教授推薦書 ii 口試委員審定書 iii 摘要 iv Abstract v 致謝 vi List of Figure x 第一章 簡介 1 1.1 反及閘型快閃記憶體的介紹 1 1.2 高密度反及閘型快閃記憶體的挑戰 4 1.3 論文概述 7 第二章 三維反及閘型快閃記憶體的介紹 8 2.1 Bandgap Engineered Silicon-Oxide-Nitride- Oxide-Silicon (BE-SONOS)記憶體元件 8 2.2 陣列組織 11 2.3 讀取操作 13 2.4 寫入操作 15 2.4.1 寫入 15 2.4.2 自我升壓抑制寫入機制 (Self-Boost Program Inhibit, SBPI) 16 2.4.3 寫入驗證機制 19 2.4.4 階層增量脈衝寫入 (Incremental Step Pulse Programming, ISPP) 21 2.5 抹除操作 22 2.5.1 電洞穿隧抹除 22 2.5.2 自我升壓抑制抹除機制 (Self-Boost Erase Inhibit, SBEI) 23 2.5.3 抹除驗證機制 25 第三章 三維垂直閘反及閘型快閃記憶體(3DVG NAND)挑戰 28 3.1 位元線的耦合雜訊 28 3.2 共用資源線的雜訊 32 3.3 各層間臨界電壓需求 34 3.4 背景資料相關聯影響 (Background Pattern Dependency, BPD) 36 3.5 電荷幫浦漣漪電壓雜訊 (Charge Pump Ripple Noise) 38 第四章 電荷幫浦在快閃記憶體中的應用 39 4.1 切換式電容電荷幫浦 39 4.2 切換式電容電荷幫浦電路實現 41 4.3 交叉耦合式倍壓器 (Cross-Coupled Structure) 42 4.4 交叉耦合式電荷幫浦升壓電路 44 4.5 電荷幫浦系統 45 4.6 反及閘型快閃記憶體中的電荷幫浦系統 47 第五章 提出的架構與操作方式 50 5.1 電荷幫浦升壓起始時間與漣漪電壓的關係 50 5.2 提出的快速啟動與小漣漪電壓的電荷幫浦系統 51 5.2.1 電荷幫浦分支關閉機制 51 5.2.2 電荷幫浦時脈拆碎調控 55 第六章 分析與比較 57 6.1 傳統降低漣漪電壓的作法 57 6.2 模擬條件 58 6.3 模擬結果 59 第七章 晶片實現 62 7.1 測試晶片架構 62 7.2 晶片實作照片 & layout 63 7.3 Printed Circuit Board(PCB)實作 65 7.4 量測結果 66 第八章 結論與未來的研究 68 Reference 69

    [1] Masuoka F., Momodomi M., Iwata Y., and Shirota R., "New ultra high density EPROM and flash EEPROM with NAND structure cell," in Electron Devices Meeting, 1987 International, 1987, pp. 552-555.
    [2] O. SanDisk Corporation.
    [3] O. Toshiba Corporation.
    [4] Bauer M., Alexis R., Atwood G., Baltar B., Fazio A., Frary K., et al., "A multilevel-cell 32 Mb flash memory," in Solid-State Circuits Conference, 1995. Digest of Technical Papers. 41st ISSCC, 1995 IEEE International, 1995, pp. 132-133.
    [5] Tanaka H., Kido M., Yahashi K., Oomura M., Katsumata R., Kito M., et al., "Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory," in VLSI Technology, 2007 IEEE Symposium on, 2007, pp. 14-15.
    [6] White M. H., Adams D. A., and Jiankang B., "On the go with SONOS," Circuits and Devices Magazine, IEEE, vol. 16, pp. 22-31, 2000.
    [7] Jaehoon Jang, Han-Soo Kim, Wonseok Cho, Hoosung Cho, Jinho Kim, Sun Il Shim, et al., "Vertical cell array using TCAT(Terabit Cell Array Transistor) technology for ultra high density NAND flash memory," in VLSI Technology, 2009 Symposium on, 2009, pp. 192-193.
    [8] Jiyoung Kim, Hong A. J., Min Kim Sung, Song Emil B., Jeung Hun Park, Jeonghee Han, et al., "Novel Vertical-Stacked-Array-Transistor (VSAT) for ultra-high-density and cost-effective NAND Flash memory devices and SSD (Solid State Drive)," in VLSI Technology, 2009 Symposium on, 2009, pp. 186-187.
    [9] Hang-Ting Lue, Szu-Yu Wang, Erh-Kun Lai, Yen-Hao Shih, Sheng-Chih Lai, Ling-Wu Yang, et al., "BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability," in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 547-550.
    [10] Hang-Ting Lue, Tzu-Hsuan Hsu, Yi-Hsuan Hsiao, S. P. Hong, M. T. Wu, F. H. Hsu, et al., "A highly scalable 8-layer 3D vertical-gate (VG) TFT NAND Flash using junction-free buried channel BE-SONOS device," in VLSI Technology (VLSIT), 2010 Symposium on, 2010, pp. 131-132.
    [11] Rich Liu, Hang-Ting Lue, K. C. Chen, and Chih-Yuan Lu, "Reliability of barrier engineered charge trapping devices for sub-30nm NAND flash," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
    [12] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Um, Jin-Ki Kim, Young-Joon Choi, Yong-Nam Koh, et al., "A 3.3 V 32 Mb NAND flash memory with incremental step pulse programming scheme," in Solid-State Circuits Conference, 1995. Digest of Technical Papers. 41st ISSCC, 1995 IEEE International, 1995, pp. 128-129.
    [13] R. Micheloni, L. Crippa, A. Marelli, "Inside NAND Flash Memories."
    [14] Tanaka T., Tanaka Y., Nakamura H., Oodaira H., Aritome S., Shirota R., et al., "A quick intelligent program architecture for 3 V-only NAND-EEPROMs," in VLSI Circuits, 1992. Digest of Technical Papers., 1992 Symposium on, 1992, pp. 20-21.
    [15] Hemink G. J., Tanaka T., Endoh T., Aritome S., and Shirota R., "Fast and accurate programming method for multi-level NAND EEPROMs," in VLSI Technology, 1995. Digest of Technical Papers. 1995 Symposium on, 1995, pp. 129-130.
    [16] Takeuchi K., Tanaka T., and Nakamura H., "A double-level-V/sub th/ select gate array architecture for multi-level NAND flash memories," in VLSI Circuits, 1995. Digest of Technical Papers., 1995 Symposium on, 1995, pp. 69-70.
    [17] Young-Bog Park and Schroder D. K., "Degradation of thin tunnel gate oxide under constant Fowler-Nordheim current stress for a flash EEPROM," Electron Devices, IEEE Transactions on, vol. 45, pp. 1361-1368, 1998.
    [18] V. M. T. Vali, G. Santin, "Compensation of back pattern effect in a memory device " US 7936606B2, 2011.
    [19] Nakagome Y., Tanaka H., Takeuchi K., Kume E., Watanabe Y., Kaga T., et al., "An experimental 1.5-V 64-Mb DRAM," Solid-State Circuits, IEEE Journal of, vol. 26, pp. 465-472, 1991.
    [20] Ming-Dou Ker, Shih-Lun Chen, and Chia-Shen Tsai, "Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage CMOS processes," Solid-State Circuits, IEEE Journal of, vol. 41, pp. 1100-1107, 2006.
    [21] Jong-Min Baek, Dong-Jin Seo, Jung-Hoon Chun, and Kee-Won Kwon, "A Dual Charge Pump for Quiescent Touch Sensor Power Supply," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 59, pp. 780-784, 2012.
    [22] Jae-Youl Lee, Sung-Eun Kim, Seong-Jun Song, Jin-Kyung Kim, Sunyoung Kim, and Hoi-Jun Yoo, "A regulated charge pump with small ripple voltage and fast start-up," Solid-State Circuits, IEEE Journal of, vol. 41, pp. 425-432, 2006.
    [23] Saiz-Vela A., Miribel-Catala P., Colomer J., and Samitier J., "Low-ripple skipping-based regulation system for a two-phase voltage doubler charge pump," in Circuits and Systems, 2009. MWSCAS '09. 52nd IEEE International Midwest Symposium on, 2009, pp. 933-936.
    [24] Po-Hung Chen, Ishida K., Xin Zhang, Okuma Y., Ryu Y., Takamiya M., et al., "A 120-mV input, fully integrated dual-mode charge pump in 65-nm CMOS for thermoelectric energy harvester," in Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific, 2012, pp. 469-470.
    [25] Tanzawa T. and Tanaka T., "A dynamic analysis of the Dickson charge pump circuit," Solid-State Circuits, IEEE Journal of, vol. 32, pp. 1231-1240, 1997.
    [26] Feng Pan, Tapan Samaddar, "Charge Pump Circuit Design."

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE