簡易檢索 / 詳目顯示

研究生: 黃俊隆
Huang, Jun Long
論文名稱: 利用PZT圖形定義提升封閉式壓電麥克風感測靈敏度
Improve Sensitivity of MEMS Piezoelectric Clamped Microphone Utilizing Patterned PZT Structure
指導教授: 方維倫
Fang, Weileun
口試委員: 李昇憲
吳名清
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 84
中文關鍵詞: 微機電技術壓電材料麥克風
外文關鍵詞: MEMS, Piezoelectric material, Microphone
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用PZT壓電薄膜搭配SOI的製程平台進行壓電麥克風的製作與實現,並提出不同於典型的結構設計以提升微機電壓電麥克風的感測靈敏度,從結構上的設計增加薄膜產生的應力分布,再透過感測電極的配置讀取訊號,透過有限單元法的模擬的方式進行設計,再由LEM得到壓電式麥克風在聲學上受到背腔的頻率響應與輸出量值大小的趨勢,同時自行製作後端感測的放大電路讀取麥克風元件訊號輸出。麥克風量測平坦區的頻寬約落在213~20k Hz,訊雜比達到65.16dB,相比於典型設計有顯著的增加。最後也針對壓電麥克風感測靈敏度對溫度變化的漂移,經由量測在溫度上升60°C,麥克風訊號輸出有約20%的漂移。


    This study proposes sensitivity improvement for MEMS piezoelectric microphone to increase signal to noise ratio. Using finite element analysis and lumped element modal design the microphone structure. And piezoelectric microphone devices were fabricated on lead zirconate titanate (PZT) material and Silicon-on-Insulator (SOI) process. Additionally, charge amplifier circuit increase output signal to detect. After fabrication, measuring the performance of designed microphone and comparing with typical type microphone to verify the feasibility of design. Measurement results show a flat acoustic response between 213Hz~20kHz. The sensitivity of microphone is -25dB (ref. 1V/1Pa) and signal to noise ratio is 65.16dB at 1 kHz which is higher than typical type microphone. Last, the sensitivity variation is about 20% by temperature increasing at ΔT= 60°C.

    中文摘要 I Abstract II 表目錄 XIII 圖目錄 VIII 第一章 緒論 1 1-1前言 1 1-2 文獻回顧 3 1-2-1封閉式振膜壓電麥克風 3 1-2-2懸臂樑壓電麥克風 6 1-2-3其他特殊壓電麥克風 7 1-3研究動機 8 第二章 元件設計與分析 18 2-1感測原理 19 2-2設計概念 23 2-2-1振膜結構設計 23 2-2-2麥克風電容值與電荷輸出 25 2-2-3封裝與等效電路模擬 26 2-2-4麥克風感測電路 28 2-2-5雜訊 29 第三章 製程結果 38 3-1製程流程 38 3-2製程問題與討論 40 3-2-1壓電薄膜乾蝕刻 40 3-2-2背部Deep RIE蝕刻矽草殘留 40 3-3製程結果 41 第四章 量測結果與討論 48 4-1 材料係數量測 48 4-1-1 壓電材料介電係數與介電損失量測 48 4-1-2 壓電係數d31量測 49 4-2 壓電麥克風機械特性 50 4-2-1 元件表面形貌量測 50 4-2-2 機械共振頻量測 51 4-3 壓電麥克風量測電路 51 4-4 麥克風聲學特性量測 52 4-4-1 聲學頻率響應量測 53 4-4-2 訊雜比量測 53 4-4-3 諧波失真量測 54 4-5 麥克風訊號隨溫度變化的漂移 54 4-5-1 壓電係數d31隨溫度飄移量測 55 4-5-2 介電係數隨溫度飄移量測 55 4-5-3 麥克風靈敏度隨溫度變化的漂移 55 第五章 結論與未來工作 72 5.1結果與討論 72 5.2未來工作 73 5-2-1 殘餘應力問題 73 5-2-2 壓電麥克風整合溫度感測器 74 參考文獻 76 附錄A 矩形振膜壓電麥克風 81

    [ 1 ] Status of the MEMS Industry, Yole Development, May 2015.
    [ 2 ] MEMS microphone, Yole Development, 2014.
    [ 3 ] P.V. Loeppert and S.B. Lee, “The First Commercialized MEMS Microphone,” Solid-State Sensors Actuators and Microsystems Workshop, 2006.
    [ 4 ] J.W. Weigold, T.J. Brosnihan, J. Bergeron and X. Zhang, “A MEMS Condenser Microphone For Consumer Application,” IEEE MEMS Conference, 2006.
    [ 5 ] C. Leinenbach, K.V. Teeffelen, F Laermer and H. Seidel, “New Capacitive Type MEMS Microphone,” IEEE MEMS Conference, 2010.
    [ 6 ] A. Dehé, M. Wurzer, M. Füldner and U. Krumbein, “Design of a Poly Silicon MEMS Microphone for High Signal-to-Noise Ratio,” Solid-State Device Research Conference, 2013.
    [ 7 ] J.J. Neumann, K.J. Gabriel, “CMOS-MEMS Membrane for Audio-Frequency Acoustic Actuation,” Sensors and Actuators A: Physical, 95, 2002.
    [ 8 ] M. Royer, J.O. Holmen, M.A. Wurm, O.S. Aadland and M. Glenn, “ZnO on si integrated acoustic sensor,” Sensors and Actuators A, 4, pp.357-362, 1983.
    [ 9 ] E.S Kim, and R.S. Muller, “IC-processed piezoelectric microphone,” Electron Device Letters, IEEE, 8, pp.467-468, 1987.
    [ 10 ] R.P. Ried, E.S. Kim, D.M. Hong, and R.S. Muller, “Piezoelectric microphone with on-chip CMOS circuit,” Journal of Microelectromechanical System, 2, no.3, pp.111-120, 1993.
    [ 11 ] S.C. Ko, Y.C. Kim, S.-S. Lee, S.H. Choi, and S.R. Kim, “Micromachined piezoelectric membrane acoustic device,” Sensors and Actuators A, 103, pp.130-134, 2003.
    [ 12 ] R.S Fazzio, T. Lamers, O. Buccafusca, A. Goel, and W. Dauksher, “Design and performance of aluminum nitride piezoelectric microphones,” Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, June, 2007, pp.1255-1258.
    [ 13 ] Z.H. Wang, J.M. Miao, T. Xu, G. Barbastathis, and M. Triantafyllou, “Micromachined piezoelectric microphone with high signal to noise ratio,” IEEE Transducers, Denver, CO, USA, June, 2009, pp. 1553-1556.
    [ 14 ] S. Horowitz, T. Nishida, L. Cattafesta, and M. Sheplak, “Development of a micromachined piezoelectric microphone for aeroacoustics applications,” The Journal of the Acoustical Society of America, 122, pp.3428-3436, 2007.
    [ 15 ] M.D. Williams, B.A. Griffin, T.N. Reagan, J.R. Underbrink, and M.Shelpak, “An AlN MEMS piezoelectric microphone for aeroacoustic applications,” Journal of Microelectromechanical Systems, 21, pp.270-283, 2012.
    [ 16 ] S.S. Lee, R.P. Ried, and R.M. White, “Piezoelectric Cantilever Microphone and Microspeaker,” Journal of Microelectromechanical Systems, 5, No.4, pp.238-242, 1996.
    [ 17 ] Y. Tomimatsu, H. Takahashi, T. Kobayashi, K. Matsumoto, I. Shimoyama, T. Itoh, and R. Maeda, “A piezoelectric cantilever with a Helmholtz resonator as a sound pressure sensor”, Journal of Micromechanics and Microengineering, 23, 2013.
    [ 18 ] R. Littrell and K. Grosh, “Noise minimization in micromachined piezoelectric microphones,” Proceedings of Meetings on Acoustics, 19, no.030041, 2013.
    [ 19 ] http://vespermems.com.
    [ 20 ] C.H. Han, and E.S. Kim, “Fabrication of piezoelectric acoustic transducers built on cantilever-like diaphragm,” IEEE Micro Electro Mechanical Systems, Interlaken, Switzerland, Jan, 2001, pp.110-113.
    [ 21 ] M.L. Kuntzman, N.N. Hewa-Kasakarage, A. Rocha, D. Kim, and N.A. Hall, “Micromachined in-plane pressure-gradient piezoelectric microphones”, IEEE sensors Journal, 15, NO. 3, pp.1347-1357, 2015.
    [ 22 ] InvenSense, Microphone specifications explained, Application Note AN-1112, 2013.
    [ 23 ] S.-T. Ho, “Modeling and analysis on ring-type piezoelectric transformers”, Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions, 54, NO.11, pp.2376-2384, 2007.
    [ 24 ] R.J. Littrell, “High performance piezoelectric MEMS microphones”, Diss. The University of Michigan, 2010.
    [ 25 ] M. Yu and B. Balachandran, “Sensor diaphragm under initial tension: Linear analysis”, Experimental Mechanics, 45, pp.123-129, 2005.
    [ 26 ] S.P. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells, New York, McGraw-Hill, 1959.
    [ 27 ] STMicroelectronics, “Tutorial for MEMS microphone,” AN4426 Application note, 2014.
    [ 28 ] D.T. Martin, “Design, fabrication, and characterization of a MEMS dual-backplate capacitive microphone”, Diss. University of Florida, 2007.
    [ 29 ] E. Bartolome, “Signal conditioning for piezoelectric sensors,” Texas Instruments Incorporated, 2010.
    [ 30 ] J. Karki, “Signal conditioning for piezoelectric sensors,” Texas Instruments Incorporated, Sep 2000.
    [ 31 ] M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H.Nazeer, E Houwman and G. Rijnders, “The significance of the piezoelectric coefficient d31,eff determined from cantilever structures”, Journal of Micromechanics and Microenhineering, 23, 2012.
    [ 32 ] C.-L Cheng, M.-H Tsai and Weileun Fang, “Determined the thermal expansion coefficient of thin film for a CMOS MEMS process using test cantilevers”, Journal of Micromechanics and Microenhineering, 25, 2015.
    [ 33 ] K. Tsutsumi, A. Yamashita and H. Ohji, “The experiment study of high TCR Pt thin films for thermal sensors”, Proceedings of IEEE Sensors, 2, pp.1002–1005, 2002.
    [ 34 ] S. Das and J. Akhtar, “Comparative study on temperature coefficient of resistance (TCR) of the E-beam and sputter deposited nichrome thin film for precise temperature control of microheater for MEMS gas sensor”, Physics of Semiconductor Devices, Springer International Publishing, 2014, pp. 495-497.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE