研究生: |
黃俊隆 Huang, Jun Long |
---|---|
論文名稱: |
利用PZT圖形定義提升封閉式壓電麥克風感測靈敏度 Improve Sensitivity of MEMS Piezoelectric Clamped Microphone Utilizing Patterned PZT Structure |
指導教授: |
方維倫
Fang, Weileun |
口試委員: |
李昇憲
吳名清 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 微機電技術 、壓電材料 、麥克風 |
外文關鍵詞: | MEMS, Piezoelectric material, Microphone |
相關次數: | 點閱:96 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要利用PZT壓電薄膜搭配SOI的製程平台進行壓電麥克風的製作與實現,並提出不同於典型的結構設計以提升微機電壓電麥克風的感測靈敏度,從結構上的設計增加薄膜產生的應力分布,再透過感測電極的配置讀取訊號,透過有限單元法的模擬的方式進行設計,再由LEM得到壓電式麥克風在聲學上受到背腔的頻率響應與輸出量值大小的趨勢,同時自行製作後端感測的放大電路讀取麥克風元件訊號輸出。麥克風量測平坦區的頻寬約落在213~20k Hz,訊雜比達到65.16dB,相比於典型設計有顯著的增加。最後也針對壓電麥克風感測靈敏度對溫度變化的漂移,經由量測在溫度上升60°C,麥克風訊號輸出有約20%的漂移。
This study proposes sensitivity improvement for MEMS piezoelectric microphone to increase signal to noise ratio. Using finite element analysis and lumped element modal design the microphone structure. And piezoelectric microphone devices were fabricated on lead zirconate titanate (PZT) material and Silicon-on-Insulator (SOI) process. Additionally, charge amplifier circuit increase output signal to detect. After fabrication, measuring the performance of designed microphone and comparing with typical type microphone to verify the feasibility of design. Measurement results show a flat acoustic response between 213Hz~20kHz. The sensitivity of microphone is -25dB (ref. 1V/1Pa) and signal to noise ratio is 65.16dB at 1 kHz which is higher than typical type microphone. Last, the sensitivity variation is about 20% by temperature increasing at ΔT= 60°C.
[ 1 ] Status of the MEMS Industry, Yole Development, May 2015.
[ 2 ] MEMS microphone, Yole Development, 2014.
[ 3 ] P.V. Loeppert and S.B. Lee, “The First Commercialized MEMS Microphone,” Solid-State Sensors Actuators and Microsystems Workshop, 2006.
[ 4 ] J.W. Weigold, T.J. Brosnihan, J. Bergeron and X. Zhang, “A MEMS Condenser Microphone For Consumer Application,” IEEE MEMS Conference, 2006.
[ 5 ] C. Leinenbach, K.V. Teeffelen, F Laermer and H. Seidel, “New Capacitive Type MEMS Microphone,” IEEE MEMS Conference, 2010.
[ 6 ] A. Dehé, M. Wurzer, M. Füldner and U. Krumbein, “Design of a Poly Silicon MEMS Microphone for High Signal-to-Noise Ratio,” Solid-State Device Research Conference, 2013.
[ 7 ] J.J. Neumann, K.J. Gabriel, “CMOS-MEMS Membrane for Audio-Frequency Acoustic Actuation,” Sensors and Actuators A: Physical, 95, 2002.
[ 8 ] M. Royer, J.O. Holmen, M.A. Wurm, O.S. Aadland and M. Glenn, “ZnO on si integrated acoustic sensor,” Sensors and Actuators A, 4, pp.357-362, 1983.
[ 9 ] E.S Kim, and R.S. Muller, “IC-processed piezoelectric microphone,” Electron Device Letters, IEEE, 8, pp.467-468, 1987.
[ 10 ] R.P. Ried, E.S. Kim, D.M. Hong, and R.S. Muller, “Piezoelectric microphone with on-chip CMOS circuit,” Journal of Microelectromechanical System, 2, no.3, pp.111-120, 1993.
[ 11 ] S.C. Ko, Y.C. Kim, S.-S. Lee, S.H. Choi, and S.R. Kim, “Micromachined piezoelectric membrane acoustic device,” Sensors and Actuators A, 103, pp.130-134, 2003.
[ 12 ] R.S Fazzio, T. Lamers, O. Buccafusca, A. Goel, and W. Dauksher, “Design and performance of aluminum nitride piezoelectric microphones,” Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, June, 2007, pp.1255-1258.
[ 13 ] Z.H. Wang, J.M. Miao, T. Xu, G. Barbastathis, and M. Triantafyllou, “Micromachined piezoelectric microphone with high signal to noise ratio,” IEEE Transducers, Denver, CO, USA, June, 2009, pp. 1553-1556.
[ 14 ] S. Horowitz, T. Nishida, L. Cattafesta, and M. Sheplak, “Development of a micromachined piezoelectric microphone for aeroacoustics applications,” The Journal of the Acoustical Society of America, 122, pp.3428-3436, 2007.
[ 15 ] M.D. Williams, B.A. Griffin, T.N. Reagan, J.R. Underbrink, and M.Shelpak, “An AlN MEMS piezoelectric microphone for aeroacoustic applications,” Journal of Microelectromechanical Systems, 21, pp.270-283, 2012.
[ 16 ] S.S. Lee, R.P. Ried, and R.M. White, “Piezoelectric Cantilever Microphone and Microspeaker,” Journal of Microelectromechanical Systems, 5, No.4, pp.238-242, 1996.
[ 17 ] Y. Tomimatsu, H. Takahashi, T. Kobayashi, K. Matsumoto, I. Shimoyama, T. Itoh, and R. Maeda, “A piezoelectric cantilever with a Helmholtz resonator as a sound pressure sensor”, Journal of Micromechanics and Microengineering, 23, 2013.
[ 18 ] R. Littrell and K. Grosh, “Noise minimization in micromachined piezoelectric microphones,” Proceedings of Meetings on Acoustics, 19, no.030041, 2013.
[ 19 ] http://vespermems.com.
[ 20 ] C.H. Han, and E.S. Kim, “Fabrication of piezoelectric acoustic transducers built on cantilever-like diaphragm,” IEEE Micro Electro Mechanical Systems, Interlaken, Switzerland, Jan, 2001, pp.110-113.
[ 21 ] M.L. Kuntzman, N.N. Hewa-Kasakarage, A. Rocha, D. Kim, and N.A. Hall, “Micromachined in-plane pressure-gradient piezoelectric microphones”, IEEE sensors Journal, 15, NO. 3, pp.1347-1357, 2015.
[ 22 ] InvenSense, Microphone specifications explained, Application Note AN-1112, 2013.
[ 23 ] S.-T. Ho, “Modeling and analysis on ring-type piezoelectric transformers”, Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions, 54, NO.11, pp.2376-2384, 2007.
[ 24 ] R.J. Littrell, “High performance piezoelectric MEMS microphones”, Diss. The University of Michigan, 2010.
[ 25 ] M. Yu and B. Balachandran, “Sensor diaphragm under initial tension: Linear analysis”, Experimental Mechanics, 45, pp.123-129, 2005.
[ 26 ] S.P. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells, New York, McGraw-Hill, 1959.
[ 27 ] STMicroelectronics, “Tutorial for MEMS microphone,” AN4426 Application note, 2014.
[ 28 ] D.T. Martin, “Design, fabrication, and characterization of a MEMS dual-backplate capacitive microphone”, Diss. University of Florida, 2007.
[ 29 ] E. Bartolome, “Signal conditioning for piezoelectric sensors,” Texas Instruments Incorporated, 2010.
[ 30 ] J. Karki, “Signal conditioning for piezoelectric sensors,” Texas Instruments Incorporated, Sep 2000.
[ 31 ] M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H.Nazeer, E Houwman and G. Rijnders, “The significance of the piezoelectric coefficient d31,eff determined from cantilever structures”, Journal of Micromechanics and Microenhineering, 23, 2012.
[ 32 ] C.-L Cheng, M.-H Tsai and Weileun Fang, “Determined the thermal expansion coefficient of thin film for a CMOS MEMS process using test cantilevers”, Journal of Micromechanics and Microenhineering, 25, 2015.
[ 33 ] K. Tsutsumi, A. Yamashita and H. Ohji, “The experiment study of high TCR Pt thin films for thermal sensors”, Proceedings of IEEE Sensors, 2, pp.1002–1005, 2002.
[ 34 ] S. Das and J. Akhtar, “Comparative study on temperature coefficient of resistance (TCR) of the E-beam and sputter deposited nichrome thin film for precise temperature control of microheater for MEMS gas sensor”, Physics of Semiconductor Devices, Springer International Publishing, 2014, pp. 495-497.