研究生: |
蘇百櫻 Pai-Ying Su |
---|---|
論文名稱: |
成長發光氧化矽奈米結構於自組裝六角網狀金奈米粒子之研究 Growth of Light-Emitting Silicate Nanowires on Individual Au Particles in Self-Assembled Hexagonal Au Particle Networks |
指導教授: |
陳力俊
Lih-Juann Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 132 |
中文關鍵詞: | 自我組裝 、氧化矽 、奈米粒子 、六角網絡 |
外文關鍵詞: | self-assembled, silicate, nanoparticle particle, hexagonal networks |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,包含了四個主題。首先使用兩相還原法自我組裝的方式,來成長大面積且顆粒大小、形狀都非常一致的金奈米粒子。利用預先合成之Au@TOAB做為前驅物,在室溫下經由外殼層快速的由原本TOAB置換成DT,得到Au@TOAB-DT奈米粒子。本章節裡並加以探討不同的外殼層對奈米金粒子大小及分佈的影響。
利用兩相還原法所得到之大小均勻且規則排列之Au@TOAB-DT奈米粒子,滴鑄在矽基材上,經由控制適當的濃度、溫度及溼度,可得到由金奈米粒子所建構之規則大面積蜂窩狀排列結構。且可藉由控制濃度、有機溶液揮發速率及溼度加以對每個六角形單體大小做一穩定的控制。本章節裡對為何會自我組裝排列形成蜂窩狀金奈米粒子之機制做深入的探討研究。
針對所形成之自我組裝蜂窩狀金奈米顆粒做熱穩定之分析,發現在1000 ℃高溫退火後,為了降低表面能,金奈米粒子會由原本蜂窩狀結構轉變成六角形網狀結構,再提高退火溫度至1100 ℃時,發現兩種形狀的氧化矽奈米結構會在六角頂點之金顆粒上生成,分別是像花朵(flower-like)及豆芽菜(bean sprout-like)的形狀。對其做CL發光性質量測,發現具有發藍光之特性。
最後利用金顆粒當做催化劑,使用三區爐管成長出經由VLS機制所生成之ZnS奈米線當做一個模板(template),在In-Situ TEM裡,加熱觀察下可成長出ZnS@CNT共軸之奈米結構。此方法提供一個簡單成長不同種類的奈米線外包覆奈米碳管之共軸結構的方式。
The formation of long-range order, uniform in size and regular in shape 2-D arrays of Au@TOAB-DT nanoparticles by self-assembly with a reaction involving the displacement of the outer-shells from TOAB to DT molecules at room temperature has been investigated.
A honeycomb structure with Au skeleton was formed during the preparation of large-area hexagonal superlattices of Au nanoparticles on silicon from Au nanoparticle solution. With the appropriate annealing scheme, extraordinarily large in extent, the regular hexagonal network of Au particles was formed. By varying the Au particles solute concentration, evaporation rate, and substrate temperature, the size of the network can be controlled. The self-assembly of the hexagonal network of Au particles from Au nanoparticle solution as well as its underlying mechanism and technical implications has been investigated.
Silicate nanowires were grown on individual Au particles in self-organized hexagonal networks with discrete Au particles on various substrates from Au nanoparticle solution. Two kinds of structures were found in samples. The first is of flowery appearance and the other is like bean sprout at each of the hexagonal node site. The silicate nanowires were found to be blue-light emitting.
ZnS nanowires have been used as the template for the growth of carbon nanotubes (ZnS@CNT) with ZnS nanowires encapsulated inside by in situ TEM observation. The work provides a generic route toward the preparation and applications of new one-dimensional heterogenous coaxial nanostructures.
Chapter 1
1.1 R. P. Feynman, “There’s Plenty of Room at the Bottom,” at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959).
1.2 J. Z. Zhang, Z. L. Wang, J. Liu, S. Chen and G. Y. Liu, “Self-Assembled Nanostructures,” edited by Z. L. Wang (Kluwer Academic/Plenum Publishers, New York, 2003) pp. 1-7.
1.3 C. M. Lieber, “One-Dimensional Nanostructures: Chemistry, Physics & Applications,” Solid State Commum, 107 (1998) pp. 607-616.
1.4 M. Wilson, K. K. G. Smith, M. Simmons and B. Raguse, “Nanotechnology Basic Science Emerging Technologies,” (CRC, New York, 2002) pp. 1-28.
1.5 R. W. Siegel, E. Hu and M. C. Roco, “Nanostructure Science and Technology: A Worldwide Study,” (Prepared under the guidance of the IWGN, NSTC, 1999) pp. 1-362.
1.6 J. D. Meindl, Q. Chen and J. A Davis, “Limits on Silicon Nanoelectronics for Terascale Integration,” Science 293 (2001) pp. 2044-2049.
1.7 S. Polyviou and M. Levas, “The Future of Moore’s Law,” http://www.iis.ee.ic.ac.uk/~frank/surp98/report/sp24/.
1.8 R. Dagani, “Building for the Bottom Up,” Chem. Eng. News 78 (42) October 16 (2000) pp .27-32.
1.9 J. R. Heath, P. J. Kuekes, G. S. Snider and R. S. Williams, “A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology,” Science 280 (1998) pp. 1716-1721
1.10 G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) pp. 2418-2421.
1.11 A. Sengupta and J. Z. Zhang, “Handbook of Nanophase and Nanostructured Materials: Materials Systems and Applications Ⅰ,” edited by Z. L. Wang, Y. Liu and Z. Zhang (Kluwer Academic/Plenum Publishers, New York, 2003), Vol. 3 pp. 85-86.
1.12 M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev. 104 (2004) pp. 293-346.
1.13 A. Taleb, V. Russier, A. Courty and M. P. Pileni, “Optical Anisotropy of Organized Silver Nanoparticles in 2D Superlattice,” Applied Surface Science, Vol. 162-163 (2000) pp. 655-661.
1.14 J. Z. Zhang, Z. L. Wang, J. Liu, S. Chen and G. Y. Liu, “Self-Assembled Nanostructures,” edited by Z. L. Wang (Kluwer Academic/Plenum Publishers, New York, 2003) pp. 77-112.
1.15 Z. L. Wang, “Structural Analysis of Self Assembling Nanocrystal Superlattices,” Adv. Mater. 10 (1998) pp. 13-30.
1.16 C. J. Brinker, Y. Lu, V. Sellinger and H. Fan, “Evaporation-induced Self Assembly: Nanostructures Made Easy,” Adv. Mater. 11 (1999) pp. 579-585.
1.17 H. S. Nalwa, “Handbook of Nanostructured Materials and Nanotechnology: Synthesis and Processing,” edited by K. E. Gonsalves, S. P. Rangarajan and J. Wang, (Academic press, San Diego, 2000) pp. 1-56.
1.18 G. Schmid and F. C. Lifeng, “Metal Clusters and Colloids,” Adv. Mater. 10 (1998) pp. 515-526.
1.19 P. Yang, Y. Wu and R. Fan, “Inorganic Semiconductor Nanowires,” Inter. J. Nano. 1 (2002) pp. 1-39.
1.20 Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song and P. Yang, “Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties,” Chemistry, Euro. J. 8 (2002) pp. 1260-1268.
1.21 P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. J. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties,” Adv. Func. Mater. 12 (2002) pp. 323-331.
1.22 E. W. Wang, P. E. Sheehan and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science 277 (1997) pp. 1971-1975.
1.23 J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 287 (2000) pp. 1471-1473.
1.24 L. D. Hicks and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Phys. Rev. B 47 (1993) pp. 16631-16634.
1.25 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292 (2001) pp. 1897-1899.
1.26 Y. Wu and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12 (2000) pp. 605-607.
1.27 Y. Wu, B. Messer and P. Yang, “Superconducting MgB2 Nanowires,” Adv. Mater. 13 (2001) pp. 1487-1489.
1.28 Y. Wu and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc. 123 (2001) pp. 3165-3166.
1.29 C. C. Chen and C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater. 12 (2000) pp. 738-741.
1.30 M. H. Huang, Y. Wu, H. Feick, W. Weber and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. 13 (2001) pp. 113-116.
1.31 M. Yazawa, M. Koguchi, A. Muto, M. Ozawa and K. Hiruma, “Effect of One Monolayer of Surface Gold Atoms on the Epitaxial Growth of InAs Nanowhiskers,” Appl. Phys. Lett. 61 (1992) pp. 2051-2053.
1.32 Y. Wu, R. Fan and P. Yang, “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires,” Nano Lett. 2 (2002) pp. 83-86.
1.33 Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee and J. M. Kim, “Catalytic Growth of -Ga2O3 Nanowires by Arc Discharge,” Adv. Mater. 12 (2000) pp. 746-750.
1.34 X. F. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12 (2000) pp. 298-302.
1.35 A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279 (1998) pp. 208-211.
1.36 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science 270 (1995) pp. 1791-1794.
1.37 M. H. Huang, A. Choudrey and P. Yang, “Ag Nanowire Formation within Mesoporous Silica,” Chem. Commum. 12 (2000) pp. 1603-1604.
1.38 J. Zhu and S. Fan, “Nanostructure of GaN and SiC Nanowires Based on Carbon Nanotubes,” J. Mater. Res. 14 (1999) pp. 1175-1177.
1.39 Y. Li, G. W. Meng, L. D. Zhang and F. Philipp, “Ordered Semiconductor ZnO Nanowire Arrays and Their Photoluminescence Properties,” Appl. Phys. Lett. 76 (2000) pp. 2011-2013.
1.40 H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa and Y. Hama, “Photoluminescence from Defect Centers in High-Purity Silica Glasses Observed under 7.9 eV Excitation,” Phys. Rev. B 45 (1992) pp. 586-591.
1.41 L. S. Liao, X. M. Bao, X. Q. Zheng, N. S. Li and N. B. Min, “Blue Luminescence From Si+- Implanted SiO2 Films Thermally Grown on Crystalline Silicon,” Appl. Phys. Lett. 68 (1996) pp. 850-852.
1.42 D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong and S. Q. Feng, “Amorphous Silica Nanowires: Intensive Blue Light Emitters,” Appl. Phys. Lett. 73 (1998) pp. 3076-3078.
1.43 R. S. Wagner and W. C. Ellis, “Vapor-Solid-Liquid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) pp. 89-90.
1.44 J. Westwater, D. P. Gosain, S. Tomiya and S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction,” J. Vac. Sci. Technol. B, 15 (1997) pp. 554-557.
1.45 Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto and D. R. M. Walton, “3D Silicon Oxide Nanostructures: from Nanoflowers to Radiolaria,” J. Mater. Chem. 8 (1998) pp. 1859-1864.
1.46 Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zhou and G. Wang, “Synthesis of a-SiO2 Nanowires Using Au Nanoparticle Catalysts on a Silicon Substrate,” J. Mater. Res. 16 (2001) pp. 683-686.
1.47 L. Skuja, “Optically Active Oxygen-Deficiency-Related Centers in Amorphous Silicon Dioxide,” J. Non-Cryst. Solids. 239 (1998) pp. 16-48.
1.48 X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun and J. J. Du, “Crystalline Gallium Oxide Nanowires: Intensive Blue Light Emitters”, Chem. Phys. Lett. 328 (2000) pp. 5-9.
1.49 Z. W. Pan, Z. R. Dai and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291 (2001) pp. 1947-1949.
1.50 S. S. Brenner and G. W. Sears, “Mechanism of Whisker Growth-III Nature of Growth Sites,” Acta Met. 4 (1956) pp. 268-270.
1.51 H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P, Yu, Y. Ding, Q. L. Hang and S.Q. Feng, “Ga2O3 Nanowires Prepared by Physical Evaporation,” Solid State Comm. 109 (1999) pp. 677-682.
1.52 X. Lu, T. Hanrath, K. P. Johnston and B. A. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate,” Nano Lett. 3 (2003) pp. 93-99.
1.53 R. Q. Zhang, Y. Lifshitz and S. T. Lee, “Oxide-Assisted Semiconductor Nanowire Growth,” Adv. Mater. 15 (2003) pp. 635-640.
1.54 W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish and S. T. Lee, “Free-Standing Single Crystal Silicon Nanoribbons,” J. Am. Chem. Soc. 123 (2001) pp. 11095-11096.
1.55 S. T. Lee, N. Wang and C. S. Lee, “Semiconductor Nanowires: Synthesis, Structure and Properties”, Mater. Sci. Eng. A 286 (2000) pp. 16-23.
1.56 N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello and S. T. Lee, “Si Nanowires Grown from Silicon Oxide,” Chem. Phys. Lett. 299 (1999) pp. 237-242.
Chapter 2
2.1 M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman, “Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System,” J. Chem. Soc. Chem. Commun. (1994) pp. 801-802.
2.2 C. B. Murray, D. J. Norris and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E=Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115 (1993) pp. 8706-8715.
2.3 C. Stowell and B. A. Korgel, “Self-Assembled Honeycomb Networks of Gold Nanocrystals,” Nano Lett. 1 (2001) pp. 595-600.
2.4 J. C. Hu, P. Y. Su, V. Lapeyronie, S. L. Cheng, M. Y. Lin and L. J. Chen, “Self-Assembled Au Nanoparticle Superlattice via a Displacement Reaction,” J. Electron. Mater. 33 (2004) pp. 1058-1063.
2.5 T. T. Sheng and C. C. Chang, “Transmission Electron Microscopy of Cross Section of Large Scale Integrated Circuits,” IEEE Trans. Electron Devices Ed-23 (1976) pp. 531-536.
Chapter 3
3.1 T. Sato, H. Ahmed, D. Brown and B. F. G. Johnson, “Single Electron Transistor Ssing a Molecularly Linked Gold Colloidal Particle Chain,” J. Appl. Phys. 82 (1997) pp. 696-701.
3.2 C. J. Zhong and M. M. Maye, “Core-Shell Assembled Nanoparticles as Catalysts,” Adv. Mater. 13 (2001) pp. 1507-1511.
3.3 C. C. Lin, Y. C. Yeh, C. Y. Yang, C. L. Chen, G. F. Chen, C. C. Chen and Y. C. Wu, “Selective Binding of Mannose-Encapsulated Gold Nanoparticles to Type 1 Pili in Escherichia Coli,” J. Am. Chem. Soc. 124 (2002) pp. 3508-3509.
3.4 A. Courty, C. Fermon and M.P. Pileni, “"Supra Crystals" Made of Nanocrystals,” Adv. Mater. 13 (2001) pp. 254-258.
3.5 C .B. Murray, S. Sun, H. Doyle and T. Betley, “Monodisperse 3D Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices,” MRS Bull. 26 (2001) pp. 985-991.
3.6 C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs and T. R. Heath, “Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition,” Science 277 (1997) pp. 1978-1981.
3.7 G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) pp. 2418-2421.
3.8 R. P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Henderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin and R. Reifenberger, “"Coulomb Staircase" at Room Temperature in a Self-Assembled Molecular Nanostructure,” Science 272 (1996) pp. 1323-1325.
3.9 T. Teranishi, M. Haga, Y. Shiozawa and M. Miyake, “Self-Organization of Au Nanoparticles Protected by 2,6-Bis(1'-(8-thiooctyl)benzimidazol-2-yl) Pyridine,” J. Am. Chem. Soc. 122 (2000) pp. 4237-4238.
3.10 P. Galletto, P. F. Brevet, H. H. Girault, R. Antoine and M. Broyer, “Enhancement of the Second Harmonic Response by Adsorbates on Gold Colloids: The Effect of Aggregation,” J. Phys. Chem. B 103 (1999) pp. 8706-8710.
3.11 Z. L. Wang, “Structural Analysis of Self-Assembling Nanocrystal Superlattices,” Adv. Mater. 10 (1998) pp. 13-30.
3.12 C. B. Murray, C. R. Kagan and M. G. Bawendi, “Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices,” Science 270 (1995) pp. 1335-1338.
3.13 M. M. Alverez, J. T. Khoury, T. G. Schaaff, M. Shafigullin, I. Vezmar and R. L. Whetten, “Critical Sizes in the Growth of Au Clusters,” Chem. Phys. Lett. 266 (1997) pp. 91-98.
3.14 R. L. Whetten, J. T. Khoury, M. M. Alverez, S. Murthy, I. Vezmar, Z. L. Wang, P. W. Stephens, C. L. Cleveland, W. D. Luedtke and U. Landman, “Nanocrystal Gold Molecules,” Adv. Mater. 8 (1996) pp. 428-433.
3.15 C. R. Mayer, S. Neveu and V. Cabuil, “3D Hybrid Nanonetworks from Gold-Functionalized Nanoparticles,” Adv. Mater. 14 (2002) pp. 595-597.
3.16 J. R. Heath, C. M. Knobler and D. V. Leff, “Pressure/Temperature Phase Diagrams and Superlattices of Organically Functionalized Metal Nanocrystal Monolayers: The Influence of Particle Size, Size Distribution, and Surface Passivant,” J. Phys. Chem. B 101 (1997) pp. 189-197.
3.17 C. B. Murray, S. Sun, W. Gaschler, H. Doyle and T. A. Betley, “Colloidal Synthesis of Nanocrystals and Nanocrystal Superlattices,” IBM J. Res. Dev. 45 (2001) pp. 47-56.
3.18 L. O Brown and J. E. Hutchison, “Controlled Growth of Gold Nanoparticles during Ligand Exchange,” J. Am. Chem. Soc. 121 (1999) pp. 882-883.
3.19 G. Cheng and M. Moskovits, “A Highly Regular Two-Dimensional Array of Au Quantum Dots Deposited in a Periodically Nanoporous GaAs Epitaxial Layer,” Adv. Mater. 14 (2002) pp. 1567-1570.
3.20 S. T. He, J. N. Yao, P. Jiang, D. Shi, H. Zhang, S. S. Xie, S. J. Pang and H. J. Gao, “Formation of Silver Nanoparticles and Self-Assembled Two-Dimensional Ordered Superlattice,” Langmuir 17 (2001) pp. 1571-1575.
3.21 S. T. He, S. S. Xie, J. N. Yao, H. J. Gao and S. J. Pang, “Self-Assembled Two-Dimensional Superlattice of Au-Ag Alloy Nanocrystals,” Appl. Phys. Lett. 81 (2002) pp.150-152.
3.22 R. L. Whetten, M. N. Shafigullin, J. T. Khoury, T. G. Schaaff, I. Vezmar, M. M. Alvarez and A. Wilkinson, “Crystal Structures of Molecular Gold Nanocrystal Arrays,” Acc. Chem. Res. 32 (1999) pp. 397-406.
3.23 T. Hassenkam, K. Norgaard, L. Iversen, C. J. Kiely, M. Brust and T. Bjornholm, “Fabrication of 2D Gold Nanowires by Self-Assembly of Gold Nanoparticles on Water Surfaces in the Presence of Surfactants,” Adv. Mater. 14 (2002) pp. 1126-1130.
3.24 M. M. Maye and C. J. Zhong, “Manipulating Core-Shell Reactivities for Processing Nanoparticle Sizes and Shapes,” J. Mater. Chem. 10 (2000) pp. 1895-1901.
3.25 M. M. Maye, W. X. Zheng, F. L. Leibowitz, N. K. Ly and C. J. Zhong, “Heating-Induced Evolution of Thiolate-Encapsulated Gold Nanoparticles: A Strategy for Size and Shape Manipulations,” Langmuir 16 (2000) pp. 490-497.
3.26 T. Teranishi, S. Hasegawa, T. Shimizu and M. Miyake, “Heat-Induced Size Evolution of Gold Nanoparticles in the Solid State,” Adv. Mater. 13 (2001) pp. 1699-1701.
3.27 J. Fink, C. J. Kiely, D. Bethell and D. J. Schiffrin, “Self-Organization of Nanosized Gold Particles,” Chem. Mater. 10 (1998) pp. 922-926.
3.28 A. Henglein and D. Meisel, “Spreading of Aqueous Dimethyldidodecylammonium Bromide Surfactant Droplets over Liquid Hydrocarbon Substrates,” Langmuir 15 (1998) pp. 7392-7402.
3.29 S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles,” J. Phys. Chem. B 103 (1999) pp. 4212-4217.
3.30 Y. S. Shon, S. M. Gross, B. Dawson, M. Porter and R. W. Murray, “Alkanethiolate-Protected Gold Clusters Generated from Sodium S-Dodecylthiosulfate (Bunte Salts),” Langmuir 16 (2000) pp. 6555-6561.
3.31 M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman, “Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System,” J. Chem. Soc., Chem. Commun. 7 (1994) pp. 801-802.
3.32 C. B. Murray, D. J. Norris and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E=Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites,” J. Am. Chem. Soc. 115 (1993) pp. 8706-8715.
3.33 G. Y. Fan and J. M. Cowley, “Autocorrelation Analysis of High-Resolution Electron-Micrographs of Near-Amorphous Thin-Films,” Ultramicroscopy 17 (1985) pp. 345-355.
3.34 J. J. Brown, J. A. Porter, C. P. Daghlian and U. J. Gibson, “Ordered Arrays of Amphiphilic Gold Nanoparticles in Langmuir Monolayers,” Langmuir 17 (2001) pp. 7966-7969.
3.35 T. Linnert, P. Mulvaney and A. Heng, “Surface Chemistry of Colloidal Silver: Surface Plasmon Damping by Chemisorbed Iodide, Hydrosulfide (SH-), and Phenylthiolate,” J. Phys. Chem. 97 (1993) pp. 679-682.
3.36 K. G. Thomas, J. Zajicek and P. V. Kamat, “Surface Binding Properties of Tetraoctylammonium Bromide-Capped Gold Nanoparticles,” Langmuir 18 (2002) pp. 3722-3727.
Chapter 4
4.1 T. Sato, H. Ahmed, D. Brown and B. F. G. Johnson, “Single Electron Transistor Using a Molecularly Linked Gold Colloidal Particle Chain,” J. Appl. Phys. 82 (1997) pp. 696-701.
4.2 C. J. Zhong and M. M. Maye, “Core-Shell Assembled Nanoparticles as Catalysts,” Adv. Mater. 13 (2001) pp. 1507-1511.
4.3 C. C. Lin, Y. C. Yeh, C. Y. Yang, C. L. Chen, G. F. Chen, C. C. Chen and Y. C. Wu, “Selective Binding of Mannose-Encapsulated Gold Nanoparticles to Type 1 Pili in Escherichia Coli,” J. Am. Chem. Soc. 124 (2002) pp. 3508-3509.
4.4 A. Courty, C. Fermon, and M. P. Pileni, ““Supra Crystals Made of Nanocrystals,” Adv. Mater. 13 (2001) pp. 254-258.
4.5 C .B. Murray, S. Sun, H. Doyle and T. Betley, “Monodisperse 3D Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices,” MRS Bull. 26 (2001) pp. 985-991.
4.6 C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs and T. R. Heath, “Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition,” Science 277 (1997) pp. 1978-1981.
4.7 C. Renard, C. Ricolleau, E. Fort, S. Besson, T. Gacoin and J. P. Boilot, “Coupled Technique to Produce Two-Dimensional Superlattices of Nanoparticles,” Appl. Phys. Lett. 80 (2002) pp. 300-302.
4.8 G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) pp. 2418-2421.
4.9 M. Haruta, “Size and Support Dependency in the Catalysis of Gold,” Catal. Today 36 (1997) pp. 153-166.
4.10 M. Valden, X. Lai and D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties,” Science 281 (1998) pp. 1647-1650.
4.11 M. M. Maye, W. X. Zheng, F. L. Leibowitz, N. K. Ly and C. J. Zhong, “Heating-Induced Evolution of Thiolate-Encapsulated Gold Nanoparticles: A Strategy for Size and Shape Manipulations,” Langmuir 16 (2000) pp. 490-497.
4.12 C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105 (2001) pp. 5599-5611.
4.13 J. Fink, C. J. Kiely, D. Bethell and D. J. Schiffrin, “Self-Organization of Nanosized Gold Particles,” Chem. Mater. 10 (1998) pp. 922-926.
4.14 C. Stowell and Brian A. Korgel, “Self-Assembled Honeycomb Networks of Gold Nanocrystals,” Nano Lett. 1 (2001) pp. 595-600.
4.15 J. C. Hu, P. Y. Su, V. Lapeyronie, S. L. Cheng, M. Y. Lin and L. J. Chen, “Self-Assembled Au Nanoparticle Superlattice via a Displacement Reaction,” J. Electron. Mater. 33 (2004) pp. 1058-1063.
4.16 T. Teranishi, S. Hasegawa, T. Shimizu and M. Miyake, “Heat-Induced Size Evolution of Gold Nanoparticles in the Solid State,” Adv. Mater. 13 (2001) pp. 1699-1701.
4.17 J. Luo, V. W. Jones, M. M. Maye, L. Han, N. N. Kariuki and C. J. Zhong, “Thermal Activation of Molecularly-Wired Gold Nanoparticles on a Substrate as Catalyst,” J. Am. Chem. Soc. 124 (2002) pp. 13988-13989.
4.18 J. N. O’Shea, M. A. Philips, M. D. R. Taylor, P. Moriarty, M. Brust and V. R. Dhanak, “Colloidal Particle Foams: Templates for Au Nanowire Networks?,” Appl. Phys. Lett. 81 (2002) pp. 5039-5041.
4.19 A. E. Saunders, P. S. Shah, M. B. Sigman, Jr., T. Hanrath, H. S. Hwang, K. T. Lim, K. P. Johnston and B. A.Korgel, “Inverse Opal Nanocrystal Superlattice Films,” Nano Lett. 4 (2004) pp. 1943-1948.
4.20 C. S. Lee and N. Kimizuka, “Pillared Honeycomb Nanoarchitectures Formed on Solid Surfaces by the Self-Assembly of Lipid Packaged One-Dimensional Pt Complexes,” Proceedings of the National Academy of Sciences ,USA 99, APR 16 (2002) pp. 4922-4926.
4.21 A. Oron and S. G. Bankoff, “Dewetting of a Heated Surface by an Evaporating Liquid Film under Conjoining/Disjoining Pressures,” J. Colloid Interface Sci. 218 (1999) pp. 152-166.
4.22 P. S. Shah, M. B. Sigman, Jr., C. A. Stowell, K. T. Lim, K. P. Johnston and B. A. Korgel, “Single-Step Self-Organization of Ordered Macroporous Nanocrystal Thin Films,” Adv. Mater. 15 (2003) pp. 971-974.
4.23 J. T. Baker, “Breath Figures,” Philoso. Mag. 44 (1922) pp. 752-765.
Chapter 5
5.1 C .B. Murray, S. Sun, H. Doyle and T. Betley, “Monodisperse 3D Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices,” MRS Bull. 26 (2001) pp. 985-991.
5.2 V. F. Puntes, K. M. Krishnan and A. P. Alivisatos, “Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt,” Science 291 (2001) pp. 2115-2117.
5.3 P. Y. Su, J. C. Hu, S. L. Cheng, L. J. Chen and J. M. Liang, “Self-Assembled Hexagonal Au Particle Networks on Silicon from Au Nanoparticle Solution,” Appl. Phys. Lett. 84 (2004) pp. 3480-3482.
5.4 S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature 354 (1991) pp. 56-58.
5.5 X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature 409 (2001) pp. 66-69.
5.6 D. Appell, “Nanotechnology: Wired for Success,” Nature 419 (2002) pp. 553-555.
5.7 A. Cho, “Connecting the Dots to Custom Catalysts,” Science 299 (2003) pp. 1684-1685.
5.8 G. B. Yacobi and D. B. Holt, “Cathodoluminescence Microscopy of Inorganic Solid,” (Plenum Press, New York, 1990) pp. 65-66.
5.9 J. Fink, C. J. Kiely, D. Bethell and D. J. Schiffrin, “Self-Organization of Nanosized Gold Particles,” Chem. Mater. 10 (1998) pp. 922-926.
5.10 C. Stowell and B. A. Korgel, “Self-Assembled Honeycomb Networks of Gold Nanocrystals,” Nano Lett. 1 (2001) pp. 595-600.
5.11 R. S. Wagner and W. C. Ellis, “Vapor-Solid-Liquid Mechabism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) pp. 89-90.
5.12 A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279 (1998) pp. 208-211.
5.13 Z. W. Pan, Z. R. Dai and Z. L. Wang, “Nonobelts of Semiconducting Oxides,” Science 291 (2001) pp. 1947-1949.
5.14 Y. Wakayama and S. Tanaka, “Kinetics of Surface Droplet Epitaxy and Its Application to Fabrication of Mushroom-Shaped Metal/Si Heterostructure on Nanometer Scale,” Surface Sci. 420 (1999) pp. 190-199.
5.15 H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, K. Nagasawa and Y. Hama, “Photoluminescence from Defect Centers in High-Purity Silica Glasses Observed under 7.9 eV Excitation,” Phys. Rev. B 45 (1992) pp. 586-591.
5.16 D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong and S. Q. Feng, “Amorphous Silica Nanowires: Intensive Blue Light Emitters,” Appl. Phys. Lett. 73 (1998) pp. 3076-3078.
5.17 J. R. Heath, P. J. Kuekes, G. S. Snider and R. S. Williams, “A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology,” Science 280 (1998) pp. 1716-1721.
5.18 H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han and M. Meyyappan, “Growth of Epitaxial Nanowires at the Junctions of Nanowalls,” Science 300 (2003) pp. 1249-1249.
5.19 A. Oron and S. G. J. Bankoff, “Dewetting of a Heated Surface by an Evaporating Liquid Film under Conjoining/Disjoining Pressures,” Colloid Interface Sci. 218 (1999) pp. 152-166.
Chapter 6
6.1 R. Tenne, M. Homyonfer and Y. Feldman, “Nanoparticles of Layered Compounds with Hollow Cage Structures (Inorganic Fullerene-Like Structures),” Chem. Mater 10 (1998) pp. 3225-3238.
6.2 X. Blase, J. C. Charlier, A. De Vita and R. Car, “Structureal and Electronic Properties of Composite BxCyNz Nanotubes and Heterojunctions,” Appl. Phys. A 68 (1999) pp. 293-300.
6.3 Y. Zhang, K. Suenaga, C. Colliex and S. Iijima, “Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon ” Science 281 (1998) pp. 973-975.
6.4 S. Iijima and T. Ichihashi, “Single-Shell Carbon Nanotubes of 1-nm Diameter,” Nature 363 (1993) pp. 603-605.
6.5 E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science 277 (1997) pp. 1971-1975.
6.6 M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes under Tensile Load ,” Science 287 (2000) pp. 637-640.
6.7 S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs and C. Dekker, “Individual Single-Wall Carbon Nanotubes as Quantum Wires,” Nature 386 (1997) pp. 474-477.
6.8 Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee, B. S. Lee and D. C. Chung, “Effect of Surface Morphology of Ni Thin Film on the Growth of Aligned Carbon Nanotubes by Microwave Plasma-Enhanced Chemical Vapor Deposition,” J. Appl. Phys. 88 (2000) pp. 4898-4903.
6.9 T.Yamamoto, S. Kishimoto and S. Iida, “Control of Valence States for ZnS by Triple-Codoping Method,” Phys. B 308-310 (2001) pp. 916-919.
6.10 P. Calandra, M. Goffredi and V. T. Liveri, “Study of the Growth of ZnS Nanoparticles in Water/AOT/n-Heptane Microemulsions by UV-Absorption Spectroscopy,” Colloids Surf. A 160 (1999) pp. 9-13.
6.11 M. Bredol and J. Merichi, “ZnS Precipitation: Morphology Control,” J. Mater. Sci. 33 (1998) pp. 471-476.
6.12 C. Guerret-Piecourt, Y. Le Bouar, A. Loiseau and H. Pascard, “Relation Between Metal Electronic Structure and Morphology of Metal Compounds Inside Carbon Nanotubes,” Nature 372 (1994) pp. 761-765
6.13 P. M. Ajayan, T. W. Ebbsen, T. Ichihashi, S. Iijima, K. Tanigaka and H. Hiura, “Opening Carbon Nanotubes with Oxygen and Implications for Filling,” Nature 362 (1993) pp. 522-525.
6.14 R. S. Ruoff, D. C. Lorents, B. Chang, R. Malhotra and S. Subramany, “Single-Crystal Metals Encapsulated in Carbon Nanoparticles,” Science 259 (1993) pp. 346-348
6.15 S. A. Majectich, J. O. Artman, M. E. Mchenry, N. T. Nuhfer and S. W. Staley, “Preparation and Properties of Carbon-Coated Magnetic Nanocrystallites,” Phys. Rev. B 48 (1993) pp. 16845-16848.
6.16 F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine and I. Jaffe, “Selected Values of Chemical Thermodynamic Properties,”(United States Government Printing Office, Washington, 1952) pp. 180-181.
6.17 S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi and M. Kohon, “Low-Temperature Synthesis of High-Purity Single-Walled Carbon Nanotubes from Alcohol,” Chem. Phys. Lett. 360 (2002) pp. 229-234.
6.18 Y. Zhang, M. N. Gamo, C. Xiao and T. Ando, “A Novel Synthesis Method for Aligned Carbon Nanotubes in Organic Liquids,” Jpn. J. Appl. Phys. 41 (2002) pp. L408-L411.
Chapter 8
8.1 E. Katz and I. Willner, “Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications,” Angew. Chem. Int. Ed. 43 (2004) pp. 6042-6108.
8.2 T. Rajh, J. M. Nedeljkovic, L. X. Chen, O. Poluektov and M. C. Thurnauer, “Improving Optical and Charge Separation Properties of Nanocrystalline TiO2 by Surface Modification with Vitamin C,” J. Phys. Chem. B. 103 (1999) pp. 3515-3519.
8.3 C. M. Niemeyer, “Nanopartikel, Proteine und Nucleinsäuren: Die Biotechnologie begegnet den Materialwissenschaften,” Angew. Chem. 113 (2001) pp. 4254-4287.
8.4 C. M. Niemeyer, “Funktionale Hybride aus Proteinen und anorganischen Nanopartikeln,” Angew. Chem. 115 (2003) pp. 5974-5978.
8.5 J. L. West and N. J. Halas, “Engineered Nanomaterials for Biophotonics Applications: Improving Sensing, Imaging, and Therapeutics,” Annu. Rev. Biomed. Eng. 5 (2003) pp. 285-292.
8.6 Y. Xia, B. Gates, Y. Yin and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications,” Adv. Mater. 12 (2000) pp. 693-713.
8.7 O. D. Velev and E. W. Kaler, “Structured Porous Materials via Colloidal Crystal Templating: From Inorganic Oxides to Metals,” Adv. Mater. 12 (2000) pp. 531-534.
8.8 O. D. Velev, P. M. Tessier, A. M. Lenhoff and E. W. Kaler, “Materials: A Class of Porous Metallic Nanostructures,” Nature 401 (1999) pp. 548-548.
8.9 P. Jiang, J. Cizeron, J. F. Bertone and V. L. Colvin, “Preparation of Macroporous Metal Films from Colloidal Crystals,” J. Am. Chem. Soc. 121 (1999) pp. 7957-7958.
8.10 Y. A. Vlasov, N. Yao and D. J. Norris, “Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots,” Adv. Mater. 112 (1999) pp. 165-169.
8.11 A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui and I. Khayrullin, “Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths,” Science 282 (1998) pp. 897-901.
8.12 B. T. Holland, C. F. Blanford and A. Stein, “Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids,” Science 281 (1998) pp. 538-540.
8.13 J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of Photonic Crystals Made of Air Spheres in Titania,” Science 281 (1998) pp. 802-804.
8.14 S. A. Johnson, P. J. Ollivier and T. E. Mallouk, “Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates,” Science 283 (1999) pp. 963-965.
8.15 J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) pp. 1553-1558.
8.16 C. L. Haynes and R. P. V. Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105 (2001) pp. 5599-5611.