研究生: |
林佶民 Lin, Ji-min |
---|---|
論文名稱: |
熱電模組接點的Cu/Ga/Co(Ni)界面反應 與相關材料系統相平衡探討 Cu/Ga/Co(Ni) interfacial reactions at the thermoelectric module joints and phase diagrams of their related material systems |
指導教授: |
陳信文
Chen, Sinn-wen |
口試委員: |
王朝弘
張道智 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 界面反應 、相圖 、相平衡 、固液擴散接合 、熱電 |
外文關鍵詞: | Interfacial reaction, Phase diagram, Phase equilibria, Solid-liquid interdiffusion, Thermoelectric |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱電模組(thermoelectric modules)能直接將熱能轉換成電能使用,是一極具潛力的廢熱回收裝置。熱電模組的構成,是將P-N熱電材料元件連接於金屬基材上,因此熱電模組中存在許多接點,接點的性質對於熱電模組的可靠度具有相當大的影響。由於熱電模組的應用溫度較高,以中溫型熱電材料為例,應用溫度為300oC~500oC,高於傳統含錫軟銲合金的連接溫度,因此並不適用於熱電模組的連接製程,而銀銅硬銲合金的連接溫度過高,超過熱電材料的熱穩定性範圍,可能對熱電材料本身的性質造成破壞,因此熱電模組的連接製程須具備「連結製程溫度不能高,卻要在高溫進行應用」的條件。固液擴散接合(solid-liquid interdiffusion bonding, SLID bonding)具有上述特性,其概念為將銲料加熱熔融成液態,在欲連接的金屬間發生液固界面反應,進而生成介金屬相轉變為固態、完成連接製程,因此值得我們深入去探討應用在熱電模組中的可行性。在熱電模組的構成中,為了避免熱電材料與銲料接觸發生反應,通常會於銲料與熱電材料之間引入阻障層(diffusion barrier layer)。因此本研究專注於研究金屬基材、銲料以及阻障層之間的界面反應情形,選用Cu作為金屬基材,Ga作為銲料,Co、Ni則為常見之阻障層材料,對Cu/Ga/Co及Cu/Ga/Ni相關的界面反應與相平衡系統進行研究。
Cu/Ga的界面反應部分,於200oC之實驗結果中,觀察到3-Cu9Ga4以及CuGa2之反應層;在350oC則是生成2-Cu9Ga4為反應層;於500oC觀察到1-Cu9Ga4的反應層。Co/Ga的界面反應於200oC並無觀察到反應層的生成情形;於350oC及500oC反應皆生成介金屬相CoGa3之反應層。Ni/Ga界面反應中,在200oC和350oC的實驗結果皆發現Ni3Ga7的單一反應層;而在500oC的界面反應中則生成介金屬相Ni2Ga3之反應層。Cu/Ga/Co於200oC的界面反應中,觀察到3-Cu9Ga4以及CuGa2之生成相,並無觀察到Co相關的介金屬相生成;在350oC的反應中觀察到2-Cu9Ga4以及CoGa3之反應層 ;於500oC則觀察到1-Cu9Ga4以及CoGa3的生成情形。Cu/Ga/Ni界面在200oC的反應中生成3-Cu9Ga4、CuGa2,並無觀察到Ni相關之介金屬相;於500oC則觀察到2-Cu9Ga4以及Ni3Ga7的生成情形,在500oC的Cu/Ga/Ni界面反應中則生成1-Cu9Ga4以及Ni2Ga3的介金屬相為反應層。
在Co-Cu-Ga的等溫橫截面圖的建構中,本研究以計算相圖 (Calculation of phase diagram, CALPHAD)的方法,蒐集並評估相關的二元參數,彙整在一起計算出Co-Cu-Ga於200oC、350oC及500oC時的等溫橫截面圖,以確立初步的相平衡關係,並進一步以實驗方法,建構出Co-Cu-Ga於500oC的等溫橫截面圖,其中包括五個三相區: -Co+Cu+CoGa、Cu+CoGa+-Cu7Ga2、CoGa+-Cu7Ga2+1-Cu9Ga4、CoGa+1-Cu9Ga4+CoGa3、1-Cu9Ga4+CoGa3+Liquid,並沒有三元相產生。
Thermoelectric modules can convert heat into electricity directly and have great potential in waste heat recovery. Thermoelectric modules are composed of P-N arrays devices. Therefore, there are many joints in thermoelectric modules and are usually critical to the reliability. Solid-liquid interdiffusion (SLID) bonding, uses low melting temperature solders. The solders melt at the joining temperatures, and are completely consumed after a certain length of reaction time. The solid-liquid interdiffusion bonding is thus conducted at lower temperatures, and the modules can be used at relatively higher temperatures, and is a potential joining technology for thermoelectric modules. At the joints, the solders are connected to the barrier layer, Ni or Co, and the Cu plate. When Ga is used as a solder, the possible structures of the joints are Cu/Ga/Ni and Cu/Ga/Co. This study examines the interfacial reactions in the Cu/Ga/Ni and Cu/Ga/Co samples. The results are fundamentally important for processing optimization and assessment of products’ reliability if Ga solid-liquid interdiffusion bonding is used.
The interfacial reactions in the Cu/Ga, Co/Ga and Ni/Ga couples and Cu/Ga/Co and Cu/Ga/Ni sandwich samples were examined at 200oC, 350oC and 500oC. In the Cu/Ga couples, 3-Cu9Ga4 and CuGa2 phases are the reaction phases at 200oC. The 2-Cu9Ga4 reaction layer was formed in the couples reacted at 350oC and the 1-Cu9Ga4 reaction layer was formed at 500oC. In Co/Ga reactions, no reaction phase layer was found at 200oC, but CoGa3 is the reaction phase obseved at 350oC and 500oC. In the Ni/Ga couples, Ni3Ga7 was formed in those reacted at 200oC and 350oC while Ni2Ga3 was formed at 500oC. In the Cu/Ga/Co sandwich couples, 3-Cu9Ga4 and CuGa2 are the reaction phases at 200oC. 2-Cu9Ga4 and CoGa3 were formed at 350oC while 1-Cu9Ga4 and CoGa3 were formed at 500oC. In the Cu/Ga/Ni sandwich samples. 3-Cu9Ga4 and CuGa2 phases were formed at 200oC, 3-Cu9Ga4 and Ni3Ga7 were formed at 350oC, and 1-Cu9Ga4 and Ni2Ga3 were formed at 500oC.
By the calculation of phase diagram (CALPHAD) method, isothermal sections of Co-Cu-Ga at 200oC, 350oC and 500oC were established. And isothermal section of Co-Cu-Ga at 500oC were also established by experimental method. Five tie-triangles: -Co +Cu+CoGa、Cu+CoGa+-Cu7Ga2、CoGa+-Cu7Ga2+1-Cu9Ga4、CoGa+1-Cu9Ga4+CoGa3、1-Cu9Ga4+CoGa3+Liquid are determined. No ternary compound is found in this study.
[1] L. L. N. Laboratory, “Estimated U.S. energy consumption in 2016”, (2016).
[2] D. M. Rowe, CRC Handbook of Thermoelectrics, (1995).
[3] F. J. Disalvo, “Thermoelectric cooling and power generation”, Science, Vol. 285, pp. 703-706, (1999).
[4] D. Kraemer, B. Poudel, H. P. Feng, J. C. Cavlor, B. Yu, X. Yan, Y. Ma, D. Z. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. F. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration”, Nat. Mater., Vol. 10, pp. 532-538, (2011).
[5] J. I. Umeda, “Electrical Properties of Sb-Doped n-Type SnSe”, J. Phys. Soc. Japan, Vol. 16, pp. 124-125, (1961).
[6] G. J. Snyder, and E. S. Toberer, “Complex thermoelectric materials”, Nat. Mater., Vol. 7, pp. 105-114, (2008).
[7] K. Yazawa and A. Shakouri, “Cost-effective waste heat recovery using thermoelectric systems”, J. Mater. Res., Vol. 27, pp. 1211-1217, (2012).
[8] J. Yang, Potential applications of thermoelectric waste heat recovery in the automotive industry”, International Conference on Thermoelectrics, pp. 155-159, (2005).
[9] J. G. Haidar and J. I. Ghojel, “Waste heat recovery from the exhaust of of low-power diesel engine using thermoelectric generators”, International Conference on Thermoelectrics, pp. 413-417, (2001).
[10] B. I. Ismail and W. H. Ahmed, “Thermoelectric power generation using waste-heat energy as an alternative green technology”, Recent Patents on Electrical Engineering, Vol. 2, pp. 27-39, (2009).
[11] H. J. Goldsmid, Applications of thermoelectricity, (1960).
[12] D. A. Wright, “Thermoelectric properties of bismuth telluride and its alloys”, Nature, Vol.18, pp.834-834, (1958)
[13] H. S. Kim and S. J. Hong, “Thermoelectric properties of n-type 95%Bi2Te3–5%Bi2Se3 compounds fabricated by gas-atomization and spark plasma sintering”, J. Alloy. Compd., Vol. 586, pp. 428-431, (2014).
[14] M. H. Bhuiyan, Y. Isoda, T. S. Kim and S. J. Hong, Intermetallics, ” Thermo electric properties of n-type 95%Bi2Te3-5% Bi2Se3 materials fabricated by magnetic pulsed compaction”, Intermetallics, Vol. 34, pp. 49-55, (2013).
[15] Y. Du, K. F. Cai, H. Li and B. J. An, “The influence of sintering temperature on the microstructure and thermoelectric properties of n-type Bi2Te3−xSex nanomaterials”, J. Electron. Mater., Vol. 40, pp. 518-522, (2011).
[16] J. H. Yim, K. Jung, M. J. Yoo, H. H. Park, J. S. Kim and C. Park, “Preparation and thermoelectric properties of quaternary bismuth telluride–indium selenide compound”, Curr. Appl. Phys., Vol. 11, pp. 46-49, (2011).
[17] L. D. Ivanova, L. I. Petrova, Y. V. Granatkina, V. S. Zemskov, O. B. Sokolov, S. Y. Skipidarov and N. I. Duvankov, “Extruded thermoelectric materials based on Bi2Te3-Bi2Se3 solid solutions”, Inorg. Mater., Vol. 45, pp. 123-128, (2009).
[18] T. Caillat, A. Borshchevsky and J. P. Fleurial, “Properties of single crystalline semiconducting CoSb3”, J. Appl. Phys., Vol. 80, pp. 4442-4449, (1996).
[19] A. J. Zhou, X. B. Zhao, T. J. Zhu, S. H. Yang, T. Dasgupt, C. Stiewec, R. Hassdorf and E. Mueller, “Microstructure and thermoelectric properties of SiGe-added higher manganese silicides”, Mater. Chem. Phys., Vol. 124, pp. 1001-1005, (2010).
[20] T. M. Tritt, H. Böttner, and L. Chen, “Thermoelectrics: direct solar thermal energy conversion”, MRS Bull., Vol. 33, pp. 366-368, (2008).
[21] S.D. Duvall, W.A. Owczarski, and D.F. Paulonis, “Transient liquid phase bonding: a new method for joining heat resistant alloys”, Weld. J., Vol. 53, pp. 203-214, (1974).
[22] I. Tuahpoku, M. Dollar, and T. B. Massalski, “A study of the transient liquid phase bonding process applied to an Ag/Cu/Ag sandwich joint”, Metall. Mater. Trans. A, Vol. 19, pp. 675-686, (1988).
[23] W. F. Gale and E. R. Wallach, “Microstructural development in transient liquid-phase bonding”, Metall. Mater. Trans. A, Vol. 22, pp. 2451-2457, (1991)
[24] W. D. Macdonald and T. W. Eagar, “Transient liquid phase bonding”, Annu. Rev. Mater. Sci., Vol. 22, pp. 23-46, (1992).
[25] K. Ohsasa, T. Shinmura, and T. Narita, “Numerical modeling of the transient liquid phase bonding process of Ni using Ni-B-Cr ternary filler metal”, J. Phase Equilib., Vol. 20, pp. 199-206, (1999).
[26] C. W. Sinclair, G. R. Purdy, and J. E. Morral, “Transient liquid-phase bonding in two-phase ternary systems”, Metall. Mater. Trans. A, Vol. 31, pp. 1187-1192, (2000).
[27] C. E. Campbell and W. J. Boettinger, “Transient liquid phase bonding in the Ni-Al-B System”, Metall. Mater. Trans. A, Vol. 31, pp. 2835-2847, (2000).
[28] G. Cook, and C. Sorensen, “Overview of transient liquid phase and partial transient liquid phase bonding”, J. Mater. Sci., Vol. 46, pp. 5305-5323, (2011).
[29] S. R. Cain, J. R. Wilcox, and R. Venkatraman, “A diffusional model for transient liquid phase bonding”, Acta Mater., Vol. 45, pp. 701-707, (1997).
[30] Y. Zhou, W. F. Gale, and T. H. North, “Modelling of transient liquid phase bonding”, Int. Mater. Rev., Vol. 40, pp. 181-196, (1995).
[31] W. F. Gale and D. A. Butts, “Transient liquid phase bonding”, Sci. Technol. Weld. Joi., Vol. 9, pp. 283-300, (2004).
[32] B. K. Lee, W. Y. Song, D. U. Kim, I. S. Woo, and C. Y. Kang, “Effect of bonding temperatures on the transient liquid phase bonding of a directionally solidified Ni-based superalloy, GTD-111”, Met. Mat., Vol.13, pp. 59-61, (2007).
[33] M. Abdelfatah, and O. A. Ojo, “Formation of eutectic-type microconstituent during transient liquid phase bonding of nickel: influence of process parameters”, Mat. Sci. Tech., Vol. 25, pp. 61-67, (2009).
[34] O. A. Ojo, N. L. Richards, and M. C. Chaturvedi, “Effect of gap size and process parameters on diffusion brazing of Inconel 738”, Sci. Technol. Welding Join., Vol. 9, pp. 209-220, (2004)
[35] M. Paunovic, P. J. Bailey, R. G. Schad, and D. A. Smith, “”Electrochemically deposited diffusion-barriers, J. Electrchem. Soc., Vol. 141,, pp. 1843-1850, (1994).
[36] K. M. Chow, W. Y. Ng, and L. K. Yeung, “Interdiffusion of Cu substrate/electrodeposits for Cu/Co, Cu/Co-W, Cu/Co/Ni and Cu/Co-W/Ni systems”, Surf. Coat. Technol., Vol. 99, pp. 161-170, (1998).
[37] G. Humpston, “Cobalt: a universal barrier metal for solderable under bump metallisations”, J. of Mater. Sci.: Mater. Electron., Vol. 21, pp. 584-588, (2010).
[38] L. C. Lo and A. T. Wu, “Interfacial reactions between diffusion barriers and thermoelectric materials under current stressing”, J. Electron. Mater., Vol. 41, pp. 3325-3330, (2012).
[39] H. Y. Xia, F. Drymiotis, and C. L. Chen, “Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications”, J. Mater. Sci., Vol. 49, pp. 1716-1723, (2014).
[40] A. Harnwunggmoung, K. Kurosaki, T. Plirdpring, T. Sugahara, Y. Ohishi, H. Muta, and S. Yamankada, J., “Thermoelectric properties of Ga-added CoSb3 based skutterudites”, Appl. Phys., Vol. 110, 013521, (2011).
[41] Y. Qiu, Yuting Qiu, L. Xi, X. Shi, P. Qiu, W. Zhang, L. Chen, J. R. Salvador, J. Y. Cho, J. Yang, Y. C. Chien, S. W. Chen, Y. Tang, and G. J. Snyder, “Charge-compensated compound defects in Ga-containing thermoelectric skutterudites”, Adv. Funct. Mater., Vol. 23, pp. 3194-3203, (2013).
[42] S. Choi, K. Kurosaki, A. Harnwunggmoung, Y. Miyazaki, Y. Ohishi, H. Muta and S. Yamanaka, “Enhancement of thermoelectric properties of CoSb3 skutterudite by addition of Ga and In”, Jpn. J. Appl. Phys., Vol. 54, pp. 111801, (2015).
[43] F. Weibke, and Z. Anorg, “Das zustandsdiagramm des systems kupfer-gallium”, Allg. Chem., Vol. 220, pp. 293-311, (1934).
[44] W. Hume-Rothery, and G. V. Raynor, ““The constitution of the copper-gallium alloys in the region 18 to 32 atomic percent of gallium”, J. Inst. Met., Vol. 61, pp. 205-222, (1937).
[45] J. O. Betterton, and W. Hume-Rothery, “The equlibrium diagram of the system copper-gallium in the region 30-100 at.% gallium”, J. Inst. Met., Vol. 80, pp. 459-468, (1951).
[46] J. B. Li, L. N. Ji, J. K. Liang, Y. Zhang, J. Luo, C. R. Li, and G. H. Rao, “A thermodynamic assessment of the copper–gallium system”, CALPHAD, Vol. 32, pp. 447-453, (2008).
[47] H. Okamoto, J. Phase Equilib. Diff., Vol. 26, pp. 197, (2005).
[48] P. Esslinger and K. Schubert, ““On the systematics of the structure family NiAs”, Z. Metallkd., Vol. 48, pp. 126-136, (1957)
[49] X. S. Lu, J. K. Liang, and D. F. Zhang, “An x-ray investigation of the Co-Ga binary system”, Acta Phys. Sin., Vol. 29, pp. 557-565, (1980).
[50] A. H. Van Ommen, A. P. F. M. Reckman, M. Van Feggelen, and H. Bakker, “Measurement of a magnetic after-effect in the intermetallic compound CoGa”, J. Phys. Colloques, Vol. 38, pp. 337-339, (1977).
[51] J. Gröbner, R. Wenzel, G. G. Fischer, and R. Schmid-Fetzer, “Thermodynamic calculation of the binary systems M-Ga and investigation of ternary M-Ga-N phase equilibria (M=Ni, Co, Pd, Cr)”, J. Phase Equilib., Vol. 20, pp. 615-625, (1999).
[52] X. Su and J. C. Tedenac, “Thermodynamic modeling of the cobalt-gallium system”, Intermetallics, Vol. 13, pp. 467-473, (2005).
[53] A. Chari, A. Garay, and R. Arróyave, “Thermodynamic remodeling of the Co–Ga system”, CALPHAD, Vol. 34, pp. 189-195, (2010).
[54] U. Hashimoto, “The equilibrium diagram of the Co-Cu System”, J. Jpn. Inst. Met., Vol. 1, pp. 19-26, (1937).
[55] T. Nishizawa and K. Ishida, “The Co-Cu (cobalt-copper) system”, Bull. Alloy Phase Diagr., Vol. 5, pp. 161-165, (1984).
[56] M. Palumbo, S. Curiotto, and L. Battezzati, “Thermodynamic analysis of the stable and metastable Co–Cu and Co–Cu–Fe phase diagrams”, CALPHAD, Vol. 30, pp. 171-178, (2006).
[57] P. Feschotte and P. Eggimann, “Les systemes binaires cobalt-gallium et nickel-gallium-étude comparée”, J. Less-Common Met., Vol. 63, pp. 15-30, (1979).
[58] S. Y. Lee and P. Nash, edited by T.B. Massalski, Binary Alloy Phase Diagrams, 2nd Edition, pp. 1829-1833, (1990).
[59] R. Ducher, R. Kainuma, and K. Ishida, “Phase equilibria in the Ni-rich portion of the Ni–Ga binary system”, Intermetallics, Vol. 15, pp. 148-153, (2007).
[60] C. Schmetterer, H. Flandorfer, C. L. Lengauer, J–P. Bros, and H. Ipser, “The system Ga–Ni: A new investigation of the Ga-rich part”, Intermetallics, Vol. 18, pp. 277-285, (2010).
[61] H. Okamoto, “Ga-Ni (Gallium-Nickel)”, J. Phase Equilib. Diffus., Vol. 31, pp. 575-576, (2010).
[62] W. Y. Yuan, Z. Y. Qiao, H. Ipser, and G. Eriksson, “Thermodynamic assessment of the Ni-Ga system”, J. Phase Equilib. Diffus., Vol. 25, pp. 68-74, (2004).
[63] J. L. Meijering, “Calculation of the nickel-chromium-copper phase diagram from binary data”, Acta Metall., Vol. 5, pp. 257-264, (1957).
[64] A. E. Feest and R. D. Doherty, “The Cu-Ni equilibrium phase diagram”, J. Inst. Met., Vol. 99, pp. 102-103, (1971).
[65] B. Predel and R. Mohs, “Thermodynamic untersuchung flussiger nickel-kupfer legierungen”, Arch. Eisenhutt., Vol. 42, pp. 575-579, (1971).
[66] E. Schürmann and E. Schulz, “Liquidus and solidus curves of the systems copper- manganese and copper-nickel”, Z. Metallkd., Vol. 62, pp. 758-762, (1971).
[67] B. D. Bastow and D. H. Kirkwood, “Solid/liquid equilibrium in the Copper-Nickel-Tin system determined by microprobe analysis”, J. Inst. Met., Vol. 99, pp. 277-283, (1971).
[68] D. J. Chakrabarti, D. E. Laughlin, S. W. Chen, and Y. A. Chang, edited by P. Nash, “Phase diagrams of binary nickel alloys”, ASM International, Materials Park, OH, pp. 85-95, (1991).
[69] S. an May, “Thermodynamic re-evaluation of the Cu-Ni system”, CALPHAD, Vol. 16, pp. 255-260, (1992).
[70] L. Gomidželovića, A. Kostova, D. Živkovićb, and V. Krstića, “Analytic Approach to Alloys Thermodynamics: Ternary Cu-Ga-Ni system”, Mat. Res., Vol. 19, pp.1026-1032, (2016).
[71] V. Simic and Z. Marinkovic, “Room temperature interactions in copper-metal thin film couples”, J. Less-Common Met., Vol. 72, pp. 133-140, (1980).
[72] S. K. Lin, C. L. Cho, and H. M. Chang, “Interfacial reactions in Cu/Ga and Cu/Ga/Cu couples”, J. Electron. Mater., Vol. 43, pp. 204-211, (2014).
[73] A. A. Kodentsov, S. L. Markovski, C. Cserha´ti, and F. J. J. van Loo, “Interfacial reactions in GaSb/Co metallization contacts during thermal processing”, Chem. Mater., Vol. 15, pp. 218-224, (2002).
[74] C. H. Wang and K. T. Li, “Strong effects of minor Ga addition on liquid-state Sn–Ga/Co interfacial reactions”, J. Alloy. Compd., Vol. 649, pp. 1197-1204, (2015).
[75] Z. Marinkovic and V. Simic, “Room temperature interactions in Ni/metal thin film couples”, Thin Solid Films, Vol. 98, pp. 95-100, (1982).