簡易檢索 / 詳目顯示

研究生: 章本華
Jang, Ben-Hwa
論文名稱: 零插入力微型連接器:設計、製作、量測與特性探討
On a Zero-insertion-force Micro-connctor: Design, Fabrication, Measurements, and Characterization
指導教授: 方維倫
Fang, Weileun
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 152
中文關鍵詞: 微機電連接器零插入力出平面幾何形狀控制微接觸電阻
外文關鍵詞: Micro-electro-mechanical system (MEMS) connector, Zero-insertion-force (ZIF), Out-of-plane shape control, Micro-contact resistance
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將針對創新性零插入力微型連接器的設計、製作與特性量測進行探討。零插入力微型連接器,可解決目前微機電連接器開發所面臨的技術瓶頸,如端子磨耗、高速訊號傳輸之完整性、電磁干擾與缺乏夾持機構設計等相關議題。零插入力微型連接器,除可作為細間距、高速訊號傳輸之連接器應用外,更可將其應用範圍拓展至三維立體封裝、微機電元件測試平台與異質性材料系統構裝等領域。
    接觸電阻在連接器應用中扮演著極重要的角色,因此本論文將開發嶄新量測微接觸特性的測試元件,定量化在不同接觸次數下接觸電阻、接觸力與表面粗糙度間關係。由於測試元件具備寄生電阻的校正功能,可增加接觸電阻量測的準確性,因此可萃取出相關的微接觸特性,除此之外,更發展誤差傳遞理論,評估接觸電阻量測誤差對微接觸特性萃取所造成的影響。


    MEMS-based connectors, manufactured for various applications in industry, are often criticized for problems such as the wearing effect, the poor signal integrity, the EMI prevention for high-speed signal transmission, and the lack of latch design. In this thesis a novel zero-insertion-force (ZIF) micro(μ)-connector and its characterization were presented. The characterization included the design, fabrication, analysis, and quantitative evaluation. The proposed ZIF μ-connector has been shown to remedy these problems. Potential applications of the ZIF μ-connector were addressed.
    Contact resistance for MEMS-based devices has been investigated. In particular, a micromachined testing device, designed for the removal of the parasitic resistance, was used to more precisely analyze the relationships among the contact force, the contact resistance, and the contact surface across multiple contact cycles. Error propagation analysis has been conducted to evaluate the accuracy of the measured properties.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第1章 前言 1 1-1 研究動機 1 1-2 研究目標 3 1-3 未來可應用領域 5 1-4 論文架構 9 第2章 設計與理論分析 17 2-1 零插入力微型連接器設計 17 2-1-1 微型連接器結構設計 17 2-1-2 端子出平面幾何形狀控制原理 18 2-1-3 夾持機構設計 19 2-1-4 零插入力設計 19 2-1-5 矽基材電阻的選用 20 2-1-6 過負載保護設計 21 2-1-7 阻抗匹配設計 21 2-2 端子特性理論分析 21 2-2-1 端子出平面幾何形狀控制理論分析 22 2-2-2 端子出平面幾何尺寸限制條件 30 2-2-3 最大傳送訊號電壓與功率分析 30 第3章 製程與特性模擬與量測 45 3-1 製程設計與結果 45 3-1-1 底座晶片的製程 45 3-1-2 上蓋的製程 46 3-1-3 公端的製程 46 3-1-4 微型連接器的組裝 47 3-1-5 端子製程挑戰與解決方案 47 3-1-6 製程結果 48 3-2 特性模擬與量測 49 3-2-1 端子出平面幾何形狀的量測與理論分析的驗證 49 3-2-2 正向力理論分析結果與模擬分析驗證 50 3-2-3 零插入力致動電壓的量測 51 3-2-4 端子傳送訊號最大電壓與功率估算 51 3-2-5 接觸電阻的量測 52 3-2-6 接觸電阻的量測誤差分析 53 3-2-7 高頻特性分析與量測 54 3-2-8 阻抗匹配設計 55 3-3 微型連接器特性比較 55 第4章 微型連接器接觸特性探討 75 4-1 微接觸電阻特性 76 4-2 微接觸特性的萃取 78 4-2-1 氧化膜厚度萃取 78 4-2-2 等效接觸面積半徑萃取 79 4-3 微接觸測試元件開發 80 4-3-1 微接觸測試元件設計 81 4-3-2 微接觸測試元件自身電阻校正 83 4-4 微接觸特性量測 84 4-4-1 測試元件製程與組裝 85 4-4-2 測試元件特性量測 85 4-4-3 接觸正向力與接觸電阻量測 86 4-4-4 接觸特性萃取 87 4-5 微接觸行為模型 88 4-6 微接觸測試元件應用 89 第5章 總結 108 5-1 研究成果 108 5-2 未來工作 110 參考文獻 113 附錄 A 薄膜楊氏係數量測 121 A-1 理論分析 121 A-2 二氧化矽懸臂樑測試鍵製作 122 A-3 測試儀器架設 123 A-4 楊氏係數萃取 123 A-4-1 金膜楊氏係數萃取 123 A-4-2 類鑽膜楊氏係數萃取 124 附錄 B 薄膜殘餘應力量測 130 B-1 殘餘應力之生成 130 B-2 殘餘應力量測 131 B-2-1理論分析 132 B-2-2金膜殘餘應力 134 B-2-3類鑽膜殘餘應力 135 附錄 C 微接觸特性萃取的誤差傳遞分析 140 C-1 誤差傳遞理論分析 140 C-1-1 Explicit函數的誤差傳遞分析 140 C-1-2 Implicit 函數的誤差傳遞分析 142 C-1-3 Kundsen ratio < 1之等效接觸面積半徑誤差傳遞分析 144 C-1-4 Kundsen ratio > 1之等效接觸面積半徑誤差傳遞分析 144 C-1-5 Ohmic電阻誤差傳遞分析 145 C-1-6 Sharvin電阻誤差傳遞分析 145 C-1-7 氧化膜厚度誤差傳遞分析 146 C-2 微接觸特性萃取的誤差傳遞分析驗證 147

    [1] 章本華, “下一代高速匯流排介面用連接器發展現況,” 工業材料, vol. 191, pp. 91-100, 2002.
    [2] 丁志銘等, 微機電系統技術與應用, 行政院國家科學委員會精密儀器發展中心, 2003.
    [3] R. Prasad, K.-F. Bohringer, and N. C. MacDonald, "Design, fabrication, and characterization of single crystal silicon latching snap fasteners for micro assembly," American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC. pp. 917-923.
    [4] H. Toshiyoshi, Y. Mita, M. Ogawa et al., “Chip level three-dimensional assembling of microsystems,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 3680, no. II, pp. 679-686, 1999.
    [5] N. L. Tracy, R. Rothenberger, C. Copper et al., "Array sockets and connectors using MicroSpringTM technology," Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium. pp. 129-140.
    [6] T. Unno, Y. Yokoyama, T. Toriyama et al., "Micro connector fabricated by micro process technology," Proceedings of the International Symposium on Micro Machine and Human Science. pp. 83-88.
    [7] D. C. Miller, M. L. Dunn, and V. M. Bright, "Thermally induced change in deformation of multimorph MEMS structures," Proceedings of SPIE - The International Society for Optical Engineering. pp. 32-44.
    [8] D. C. Miller, W. Zhang, and V. M. Bright, “Micromachined, flip-chip assembled, actuatable contacts for use in high density interconnection in electronics packaging,” Sensors and Actuators, A: Physical, vol. 89, no. 1-2, pp. 76-87, 2001.
    [9] S. Nikles, K. Najafi, R. Bradley et al., "Reliability and contact resistance of polysilicon beam leads for use in a high-density connector," Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS). pp. 64-67.
    [10] S. Chowdhury, M. Ahmadi, G. A. Jullien et al., "A MEMS socket system for high density SoC interconnection," Proceedings - IEEE International Symposium on Circuits and Systems. pp. 657-660.
    [11] S. Chowdhury, M. Ahmadi, and W. C. Miller, “Microelectromechanical systems and system-on-chip connectivity,” IEEE Circuits and Systems Magazine, vol. 2, no. 2, pp. 4-28, 2002.
    [12] M. P. Larsson, and R. R. A. Syms, “Self-aligning MEMS in-line separable electrical connector,” Journal of Microelectromechanical Systems, vol. 13, no. 2, pp. 365-376, 2004.
    [13] S. Nikles, R. Bradley, S. Bledsoe et al., “Design and testing of conductive polysilicon beam leads for use in a high-density biomedical connector,” Journal of Micromechanics and Microengineering, vol. 14, no. 7, pp. 957-968, 2004.
    [14] K. Tsui, A. A. Geisberger, M. Ellis et al., “Micromachined end-effector and techniques for directed MEMS assembly,” Journal of Micromechanics and Microengineering, vol. 14, no. 4, pp. 542-549, 2004.
    [15] R. Saini, Z. Jandric, K. Tsui et al., "Manufacturable MEMS microcolumn," Microelectronic Engineering. pp. 62-72.
    [16] M. P. Larsson, "Improved contact resistance stability in a MEMS separable electrical connector," Proceedings of SPIE - The International Society for Optical Engineering. p. 60350.
    [17] M. P. Larsson, and S. Lucyszyn, “A micromachined separable RF connector fabricated using low-resistivity silicon,” Journal of Micromechanics and Microengineering, vol. 16, no. 10, pp. 2021-2033, 2006.
    [18] R. Saini, Z. Jandric, I. Gory et al., “Assembled microelectromechanical system microcolumns for miniature scanning electron microscopies,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 24, no. 2, pp. 813-817, 2006.
    [19] P. Dixit, C. W. Tan, L. Xu et al., “Fabrication and characterization of fine pitch on-chip copper interconnects for advanced wafer level packaging by a high aspect ratio through AZ9260 resist electroplating,” Journal of Micromechanics and Microengineering, vol. 17, no. 5, pp. 1078-1086, 2007.
    [20] K. E. Petersen, “Silicon as a mechanical material,” Proceedings of the IEEE, vol. 70, no. 5, pp. 420-457, 1982.
    [21] P. Bley, W. Bacher, W. Menz et al., “Description of microstructures in LIGA technology,” Proceedings of the International Conference on Microlithography, pp. 509, 1991.
    [22] W. Menz, W. Bacher, M. Harmening et al., "The LIGA technique--A novel concept for microstructures and the combination with Si-technologies by injection molding." pp. 69-73.
    [23] C. Linder, L. Paratte, M. A. Gretillat et al., “Surface micromachining,” Journal of Micromechanics and Microengineering, vol. 2, no. 3, pp. 122-132, 1992.
    [24] W. N. Sharpe, Jr., R. Vaidyanathan, B. Yuan et al., “Effect of etch holes on the mechanical properties of polysilicon,” Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, vol. 15, no. 5, pp. 1599, 1997.
    [25] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1552-1573, 1998.
    [26] P. J. French, and P. M. Sarro, “Surface versus bulk micromachining: the contest for suitable applications,” Journal of Micromechanics and Microengineering, vol. 8, no. 2, pp. 45-53, 1998.
    [27] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1536-1551, 1998.
    [28] M. Esashi, "Bulk micromachining for sensors and actuators," Proceedings of SPIE - The International Society for Optical Engineering. pp. 6-15.
    [29] J. J. Sniegowski, and M. P. de Boer, “IC-compatible polysilicon surface micromachining,” Annual Review of Materials Science, vol. 30, pp. 299-333, 2000.
    [30] M. J. Madou, Fundamentals of microfabrication : the science of miniaturization, 2nd ed., Boca Raton: CRC Press, 2002.
    [31] H. Braunisch, J. E. Jaussi, J. A. Mix et al., "Flex-circuit chip-to-chip interconnects," Proceedings - IEEE 56th Electronic Components and Technology Conference, pp. 1853-1859, 2006.
    [32] B. Henning, E. J. James, and A. M. Jason, "High-Speed Flex Chip-to-Chip Interconnect," Electrical Performance of Electronic Packaging, EPEP, pp. 273-276, 2006.
    [33] W. P. Siebert, “Solder connections for high frequency applications between flexible and rigid printed circuit boards,” Components and Packaging Technologies, IEEE Transactions on, vol. 29, no. 1, pp. 118-126, 2006.
    [34] H. Braunisch, J. E. Jaussi, J. A. Mix et al., “High-Speed Flex-Circuit Chip-to-Chip Interconnects,” Advanced Packaging, IEEE Transactions on, vol. 31, no. 1, pp. 82-90, 2008.
    [35] T.-R. Hsu, MEMS and microsystems : design and manufacture, Boston: McGraw-Hill, 2002.
    [36] R. R. Tummala, Fundamentals of microsystems packaging, New York: McGraw-Hill, 2001.
    [37] P. A. Sandborn, "A review of the economics of embedded passives," Advances in Electronic Packaging. pp. 757-762.
    [38] P. A. Sandborn, B. Etienne, J. W. Herrmann et al., “Cost and production analysis for substrates with embedded passives,” Circuit World, vol. 30, no. 1 Embedded Passives Techlgy, pp. 25-30, 2004.
    [39] P. A. Sandborn, B. Etienne, and G. Subramanian, “Application-specific economic analysis of integral passives in printed circuit boards,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 24, no. 3, pp. 203-213, 2001.
    [40] M. Scheffler, D. Ammann, A. Thiel et al., “Modeling and optimizing the costs of electronic systems,” IEEE Design & Test of Computers, vol. 15, no. 3, pp. 20-26, 1998.
    [41] U. Sharma, H. Gee, D. Liou et al., “Integration of precision passive components on silicon for performance improvements and miniaturization,” Electronics Systemintegration Technology Conference, 2008. ESTC 2008. 2nd, pp. 485-490, 2008.
    [42] E. Waffenschmidt, B. Ackermann, and J. A. Ferreira, “Design method and material technologies for passives in printed circuit board embedded circuits,” IEEE Transactions on Power Electronics, vol. 20, no. 3, pp. 576-584, 2005.
    [43] I. J. Bahl, Lumped elements for RF and microwave circuits, Boston: Artech House, 2003.
    [44] L. G. Maloratsky, Passive RF & microwave integrated circuits, Amsterdam ; Bosto: Elsevier/Newnes, 2004.
    [45] R. K. Ulrich, and L. W. Schaper, Integrated passive component technology, Piscataway, NJ: IEEE Press, 2003.
    [46] C. Caloz, and T. Itoh, Electromagnetic metamaterials : transmission line theory and microwave applications : the engineering approach, Hoboken, N.J.: John Wiley & Sons, 2006.
    [47] K. Takahashi, A. Yoshikawa, and A. Sandhu, Wide bandgap semiconductors : fundamental properties and modern photonic and electronic devices, Berlin ; New York: Springer, 2007.
    [48] J. D. Joannopoulos, Photonic crystals : molding the flow of light, 2nd ed., Princeton: Princeton University Press, 2008.
    [49] 章本華, “光子晶體的基本原理與製造 ” 工業材料, no. 228, pp. 110-117, 2005.
    [50] 章本華, “光子晶體、電磁能隙基本原理與在連接器產業的應用,” 工業材料, no. 228, pp. 118-133, 2005.
    [51] T.-K. Wang, S.-T. Chen, C.-W. Tsai et al., “Modeling noise coupling between package and PCB power/ground planes with an efficient 2-D FDTD/lumped element method,” IEEE Transactions on Advanced Packaging, vol. 30, no. 4, pp. 864-871, 2007.
    [52] T.-K. Wang, T.-W. Han, and T.-L. Wu, “A novel power/ground layer using artificial substrate EBG for simultaneously switching noise suppression,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 5, pp. 1164-1171, 2008.
    [53] G. T. A. Kovacs, Micromachined transducers sourcebook, Boston, Ma.: WCB, 1998.
    [54] G. M. Rebeiz, RF MEMS : theory, design, and technology, Hoboken, NJ: J. Wiley, 2003.
    [55] S. D. Senturia, Microsystem design, Boston: Kluwer Academic Publishers, 2001.
    [56] E. Bogatin, Signal integrity-- simplified, Upper Saddle River, NJ: Prentice Hall, 2004.
    [57] D. Brooks, Signal integrity issues and printed circuit board design, Upper Saddle River, NJ: Prentice Hall, 2003.
    [58] S. H. Hall, G. W. Hall, and J. A. McCall, High speed digital system design : a handbook of interconnect theory and design practices, New York: Wiley, 2000.
    [59] H. W. Johnson, and M. Graham, High-speed digital design : a handbook of black magic, Englewood Cliffs, N.J.: Prentice Hall, 1993.
    [60] H. W. Johnson, and M. Graham, High-speed signal propagation : advanced black magic, Upper Saddle River, NJ: Prentice Hall/PTR, 2003.
    [61] S. C. Thierauf, High-speed circuit board signal integrity, Boston: Artech House, 2004.
    [62] X. Kottenberg, S. Brebels, B. Nauwelaers et al., "Modelling of the RF self-actuation of electrostatic RF-MEMS devices," Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). pp. 245-248.
    [63] X. Rottenberg, S. Brebels, W. De Raedt et al., “RF-power: Driver for electrostatic RF-MEMS devices,” Journal of Micromechanics and Microengineering, vol. 14, no. 9, pp. 43-48, 2004.
    [64] M. I. Montrose, and IEEE Electromagnetic Compatibility Society., Printed circuit board design techniques for EMC compliance : a handbook for designers, 2nd ed., New York: IEEE Press, 2000.
    [65] R. Schmitt, Electromagnetics explained : a handbook for wireless/RF, EMC, and high-speed electronics, Amsterdam ; Boston: Newnes, 2002.
    [66] C. Christopoulos, Principles and techniques of electromagnetic compatibility, 2nd ed., Boca Raton: CRC Press, 2007.
    [67] M. Swaminathan, and A. E. Engin, Power integrity modeling and design for semiconductors and systems, Upper Saddle River, NJ: Prentice Hall, 2008.
    [68] S. Timoshenko, “Analysis of bi-metal thermostats,” Journal of the Optical Society of America, vol. 11, no. 3, pp. 233-255, 1925.
    [69] P. Krulevitch, and G. C. Johnson, "Curvature of a cantilever beam subjected to an equi-biaxial bending moment," Materials Research Society Symposium - Proceedings. pp. 67-72.
    [70] J. M. Gere, and S. Timoshenko, Mechanics of materials, 3rd ed., Boston: PWS-Kent Pub. Co., 1990.
    [71] Y. C. Tsui, and T. W. Clyne, “Analytical model for predicting residual stresses in progressively deposited coatings. Part 1: Planar geometry,” Thin Solid Films, vol. 306, no. 1, pp. 23-33, 1997.
    [72] B. Pillans, J. Kleber, C. Goldsmith et al., "RF power handling of capacitive RF MEMS devices," IEEE MTT-S International Microwave Symposium Digest. pp. 329-332.
    [73] J. B. Rizk, E. Chaiban, and G. M. Rebeiz, "Steady state thermal analysis and high-power reliability considerations of RF MEMS capacitive switches," IEEE MTT-S International Microwave Symposium Digest. pp. 239-242.
    [74] L. A. Starman, R. T. Webster, and J. Robert Reid, "RF actuation of capacitive MEMS switches," IEEE MTT-S International Microwave Symposium Digest. pp. 1919-1922.
    [75] J.-B. Wu, J.-J. Chang, M.-Y. Li et al., “Characterization of diamond-like carbon coatings prepared by pulsed bias cathodic vacuum arc deposition,” Thin Solid Films, vol. 516, no. 2-4, pp. 243-247, 2007.
    [76] R. S. Timsit, “High speed electronic connectors: A review of electrical contact properties,” IEICE Transactions on Electronics, vol. E88, no. 8, pp. 1532-1545, 2005.
    [77] L. Martens, High-frequency characterization of electronic packaging, Boston: Kluwer Academic Publishers, 1998.
    [78] J. Aguilera, and R. Berenguer, Design and test of integrated inductors for RF applications, Boston: Kluwer Academic Publishers, 2003.
    [79] D. M. Pozar, Microwave engineering, 3rd ed., Hoboken, NJ: J. Wiley, 2005.
    [80] 章本華, “連接器測試治具開發技術,” 工業材料, no. 22, pp. 32-40, 2004.
    [81] W. Liu, and M. Pecht, IC component sockets, Hoboken, N.J.: Wiley-Interscience, 2004.
    [82] R. S. Mroczkowski, Electronic connector handbook : theory and applications, New York: McGraw-Hill, 1998.
    [83] B. Bhushan, Modern tribology handbook, Boca Raton, FL: CRC Press, 2001.
    [84] M. Braunovic, V. V. Konchi*t*s, and N. i. K. Myshkin, Electrical contacts : fundamentals, applications and technology, Boca Raton: CRC Press, 2007.
    [85] R. Holm, Electric contacts : theory and applications, 4th ed., Berlin ; New York: Springer, 2000.
    [86] P. G. Slade, Electrical contacts : principles and applications, New York: Marcel Dekker, 1999.
    [87] B.-H. Jang, P.-H. Tseng, and W. Fang, “Characterization of micro-contact properties using a novel micromachined apparatus,” Journal of Micromechanics and Microengineering, vol. 18, no. 5, pp. 055020, 2008.
    [88] J. Aronstein, "An updated view of the aluminum contact interface," Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts. pp. 98-103.
    [89] J. A. a. T. Greenwood, J., “The contact of two nominally flat rough surface,” Proc. Inst. Mech. Eng., vol. 185, pp. 625-633, 1971.
    [90] N. Agraït, “Quantum properties of atomic-size conductors,” Phys. Rep., vol. 377, pp. 81-279, 2003.
    [91] R. S. Timsit, “Electrical conduction through small contact spots,” IEEE Transactions on Components and Packaging Technologies, vol. 29, no. 4, pp. 727-734, 2006.
    [92] G. Wexler, “The size effect and the non-local Boltzmann transport equation in orifice and disk geometry,” Proc. Phys. Soc., vol. 89, pp. 927, 1966.
    [93] S. Majumder, N. E. McGruer, P. M. Zavracky et al., "Measurement and modeling of surface micromachined, electrostatically actuated microswitches," International Conference on Solid-State Sensors and Actuators, Proceedings. pp. 1145-1148.
    [94] J. Schimkat, “Contact measurements providing basic design data for microrelay actuators,” Sensors and Actuators, A: Physical, vol. 73, no. 1-2, pp. 138-143, 1999.
    [95] E. J. J. Kruglick, and K. S. J. Pister, “Lateral MEMS microcontact considerations,” Journal of Microelectromechanical Systems, vol. 8, no. 3, pp. 264-271, 1999.
    [96] J. DeNatale, R. Mihailovich, and J. Waldrop, "Techniques for reliability analysis of MEMS RF switch," Annual Proceedings - Reliability Physics (Symposium). pp. 116-117.
    [97] R. A. Coutu Jr, P. E. Kladitis, L. A. Starman et al., “A comparison of micro-switch analytic, finite element, and experimental results,” Sensors and Actuators, A: Physical, vol. 115, no. 2-3 SPEC ISS, pp. 252-258, 2004.
    [98] H. Lee, R. A. Coutu Jr, S. Mall et al., “Nanoindentation technique for characterizing cantilever beam style RF microelectromechanical systems (MEMS) switches,” Journal of Micromechanics and Microengineering, vol. 15, no. 6, pp. 1230-1235, 2005.
    [99] L. Kogut, and K. Komvopoulos, “Breakdown of ultrathin native oxide films at contact interfaces of electromechanically stressed silicon microdevices,” Journal of Applied Physics, vol. 97, no. 12, pp. 124102, 2005.
    [100] B. D. Jensen, L. L. W. Chow, K. Huang et al., “Effect of nanoscale heating on electrical transport in RF MEMS switch contacts,” Journal of Microelectromechanical Systems, vol. 14, no. 5, pp. 935-946, 2005.
    [101] J. W. McBride, “The loaded surface profile: A new technique for the investigation of contact surfaces,” in 5th International Conference on Entertainment Computing, Cambridge, United Kingdom, 2006, pp. 150-156.
    [102] T. Do, S. J. Splinter, C. Chen et al., “Oxidation kinetics of Mg and Al surfaces studied by AES and XPS,” Surface Science, vol. 387, no. 1-3, pp. 192-198, 1997.
    [103] N. W. Ashcroft, and N. D. Mermin, Solid State Physics, New York: Holt: Rhinehart and Winston, 1976.
    [104] H. Kanter, “Slow-electron mean free paths in aluminum, silver, and gold,” Phys. Rev. B, vol. 1:522, 1970.
    [105] G. T. Meaden, Electrical resistance of metals, New York: Plenum Press, 1965.
    [106] J.-N. Kuo, G.-B. Lee, W.-F. Pan et al., “Shape and thermal effects of metal films on stress-induced bending of micromachined bilayer cantilever,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 44, no. 5 A, pp. 3180-3186, 2005.
    [107] T. J. Kang, J. G. Kim, J. S. Lee et al., “Low-thermal-budget and selective relaxation of stress gradients in gold micro-cantilever beams using ion implantation,” Journal of Micromechanics and Microengineering, vol. 15, no. 12, pp. 2469-2478, 2005.
    [108] S. Timoshenko, D. H. Young, and W. Weaver, Vibration problems in engineering, 4th ed., New York,: Wiley, 1974.
    [109] R. J. Roark, W. C. Young, and R. G. Budynas, Roark's formulas for stress and strain, 7th ed., New York: McGraw-Hill, 2002.
    [110] D. Schneider, B. Schultrich, H. J. Scheibe et al., “Laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films, vol. 332, no. 1-2, pp. 157-163, 1998.
    [111] D. Schneider, and P. Siemroth, “Characterizing ultra-thin films by laser-acoustics,” VDI Berichte, no. 1803, pp. 321-325, 2003.
    [112] W. N. Sharpe Jr, B. Yuan, and R. L. Edwards, “New technique for measuring the mechanical properties of thin films,” Journal of Microelectromechanical Systems, vol. 6, no. 3, pp. 193-199, 1997.
    [113] J. J. Vlassak, and W. D. Nix, “New bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films,” Journal of Materials Research, vol. 7, no. 12, pp. 3242-3249, 1992.
    [114] Y. Xiang, X. Chen, and J. J. Vlassak, “Plane-strain bulge test for thin films,” Journal of Materials Research, vol. 20, no. 9, pp. 2360-2370, 2005.
    [115] O. Tabata, K. Kawahata, S. Sugiyama et al., “Mechanical property measurements of thin films using load-deflection of composite rectangular membranes,” Sensors and actuators, vol. 20, no. 1-2, pp. 135-141, 1989.
    [116] P. M. Osterberg, and S. D. Senturia, “M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures,” Journal of Microelectromechanical Systems, vol. 6, no. 2, pp. 107-118, 1997.
    [117] W. N. Sharpe, Jr., B. Yuan, R. Vaidyanathan et al., "Measurements of Young's modulus, Poisson's ratio, and tensile strength of polysilicon," Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS). pp. 424-429.
    [118] H. Ogawa, K. Suzuki, S. Kaneko et al., "Measurements of mechanical properties of microfabricated thin films," Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS). pp. 430-435.
    [119] T. Tsuchiya, O. Tabata, J. Sakata et al., “Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films,” Journal of Microelectromechanical Systems, vol. 7, no. 1, pp. 106-113, 1998.
    [120] C. Serre, P. Gorostiza, A. Perez-Rodriguez et al., “Measurement of micromechanical properties of polysilicon microstructures with an atomic force microscope,” Sensors and Actuators, A: Physical, vol. 67, no. 1 -3 pt 1, pp. 215-219, 1998.
    [121] C. Serre, R. rez, A. guez et al., “Determination of micromechanical properties of thin films by beam bending measurements with an atomic force microscope,” Sensors and Actuators, A: Physical, vol. 74, no. 1, pp. 134-138, 1999.
    [122] T. Chudoba, N. Schwarzer, F. Richter et al., “Determination of mechanical film properties of a bilayer system due to elastic indentation measurements with a spherical indenter,” Thin Solid Films, vol. 377-378, pp. 366-372, 2000.
    [123] L. Riester, P. J. Blau, E. Lara-Curzio et al., “Nanoindentation with a Knoop indenter,” Thin Solid Films, vol. 377-378, pp. 635-639, 2000.
    [124] N. X. Randall, "Characterisation of the mechanical properties of MEMS devices using nanoscale techniques," Progress in Biomedical Optics and Imaging - Proceedings of SPIE. pp. 131-140.
    [125] L. M. Zhang, D. Uttamchandani, and B. Culshaw, “Measurement of the mechanical properties of silicon microresonators,” Sensors and Actuators, A: Physical, vol. 29, no. 1, pp. 79-84, 1991.
    [126] L. Kiesewetter, J. M. Zhang, D. Houdeau et al., “Determination of Young's moduli of micromechanical thin films using the resonance method,” Sensors and Actuators, A: Physical, vol. 35, no. 2, pp. 153-159, 1992.
    [127] R. M. Haralick, "Propagating covariance in computer vision," Proceedings - International Conference on Pattern Recognition. pp. 493-498.
    [128] R. M. Haralick, “Principles of covariance propagation,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 3811, pp. 2-19, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE