研究生: |
鍾明憲 Chung, Ming-Hsien |
---|---|
論文名稱: |
使用時間放大技術實現之游標尺式時間數位轉換器 A Time-to-Digital Converter Using Vernier Delay Line with Time Amplification Technique |
指導教授: |
周懷樸
Chou, Hwai-Pwu |
口試委員: |
黃弘一
Huang, Hong-Yi 盧志文 Lu, Chih-Wen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 時間數位轉換器 、時間放大器 、游標尺延遲線 、二階游標尺式時間數位轉換器 、時間放大技術 |
外文關鍵詞: | Time-to-Digital Converter, Time Amplifier, Vernier Delay Line, Two-Stage Vernier Delay Line TDC, Time Amplification Technique |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為將時間放大技術應用在二階游標尺延遲線之時間數位轉換器,以解決游標尺延遲線架構在面積、功率消耗、及元件匹配度等方面所遭遇的問題,同時能使時間數位轉換器達到更高的時間解析度。在本論文中我們提出了基於在單位增益緩衝器組態下之差動差值放大器的時間放大器架構,其時間增益可藉由改變差動差值放大器之輸出共模電壓而在2~20倍之間做調變,而最大輸入範圍可達到60ps。我們將此時間放大器的增益設定在16倍,並且應用於一個第一級為5位元,而第二級為4位元的二階游標尺延遲線時間數位轉換器中,兩個輸入訊號之間的時間差經過第一級游標尺延遲線做粗略的時間解析之後,殘餘時間會藉由介面電路傳送給時間放大器,第二級游標尺延遲線會再將放大後的殘餘時間做更精細的時間解析。其中第一級和第二級游標尺延遲線的解析度皆為45ps,此數值則是來自於組成延遲元件的反相器之傳輸延遲。
一個9位元的時間數位轉換器使用TSMC CMOS 0.18um 1P6M製程來實現,根據模擬結果顯示,其時間解析度可達到3ps,而最大可量測時間範圍為1.44ns,DNL及INL則分別介於-0.5LSB~+0.9LSB和-0.8LSB~+1LSB之間。
This paper describes the design of using time amplification in time-to-digital converter (TDC) with two level vernier delay line (VDL), which is used to solve the limitations of chip area, power consumption, and device mismatching of VDL in 10 picoseconds or less time resolution. In this paper, we proposed a new TA architecture based on differential difference amplifier (DDA) in unity gain buffer configuration. The gain is adjustable between 2 to 20, which can be controlled by the output common-mode voltage of DDA, and the input range can up to about 60ps. The proposed TA is applied to a 9-bit two-stage TDC. The TDC is using a two-stage VDL structure. The first stage has five bits, and the second stage has four bits. The TA with a gain of 16 is placed in between the two VDLs. After the five most significant bits (MSB) time-to-digital conversion is first carried out by the coarse VDL, the time residual of the coarse VDL is transferred to the TA through an interface circuit. The fine VDL then converts the amplified time residual to the four least significant bits (LSB). Both VDLs have designed with the same timing resolution of about 40ps, which is the intrinsic delay of inverters.
A 9-bit two-stage vernier delay line time-to-digital converter has been proposed using TSMC 0.18um CMOS process. Simulation result shows that the overall time resolution of the TDC is 3ps, and the full input range is about 1.44ns. Besides, the DNL and INL are -0.5~0.9 LSB and -0.8~1 LSB, respectively.
[1] G.H. Li, H.P. Chou, “A High Resolution Time-to-Digital Converter Using Two-Level Vernier Delay Line Technique,” IEEE Nuclear Science Symposium Conference Record, Vol. 1, pp. 276-280, 2007
[2] W. F. Lin, and H.P. Chou, “A Fast Single Slope ADC with Vernier Delay Line Techniques,” IEEE Nuclear Science Symposium Conference Record , pp. 313-317, Oct. 2009.
[3] P. Dudek, S. Szczepanski, and J.V. Hatfield, “A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 2, pp. 240-247, Feb. 2000.
[4] C.S. Hwang, P. Chen, and H.W. Tsao, “A High-Precision Time-to-Digital Converter Using a Two-Level Conversion Scheme,” IEEE Transactions on Nuclear Science, Vol. 51, No. 4, pp. 1349-1352, Aug. 2004.
[5] P. H. Hsueh and H.P. Chou, (2008) “Nuclear Pulse Height Measurement Using Vernier TDC,” Int. Sym .on Radiation Measurements and Applications, SORMA West 2008, June 2-5, Berkeley, CA, USA
[6] B. Razavi, “Phase-Locking in High-Performance Systems From Devices to Architectures,” IEEE PRESS, pp. 17-18, 2003.
[7] N.R. Mahapatra, S.V. Garimella, A. Tareen, “An Empirical and Analytical Comparison of Delay elements and A New Delay Element Design,” Proceedings of IEEE Computer Society Workshop on VLSI, pp. 81-86, April. 2000.
[8] A. Mantyniemi, T. Rahkonen, J. Kostamovaara, “A High Resolution Digital CMOS Time-to-Digital Converter Based on Nested Delay Locked Loops,” Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 2, pp. 537-540, 1999.
[9] S.M. Kang, Y. Leblebigi, “CMOS Digital Integrated Circuits Analysis and Design,” McGraw-Hill, 2nd edition, 1999.
[10] C. Y. Yang, G. K. Dehng, J. M. Hsu, and S. I. Liu, “New Dynamic Flip-Flops for High-Speed Dual-Modules Prescaler,” IEEE J. Solid-State Circuits, Vol. 33, no. 10, pp. 1568-1571, Oct. 1998.
[11] M. A. Abas, G. Russell, and D. J. Kinniment, “Design of sub-10-picoseconds on-chip time measurement circuit,” in Proc. Design Automation Test Europe Conf.,2004, vol. 2, pp. 804-809.
[12] A. M. Abas et al., “Time difference amplifier,” Electron. Lett., vol. 38, no. 23, pp. 1437–1438, Nov. 2002.
[13] M. Lee, and A. A. Abidi, “A 9 b, 1.25 ps Resolution Coarse–Fine Time-to-Digital Converter in 90 nm CMOS that Amplifies a Time Residue,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 769–777, Apr. 2008.
[14] S. Mandai, T. Nakura, M. Ikeda, and K. Asada, “A 8bit Two Stage Time-to-Digital Converter Using 16x Cascaded Time Difference Amplifier in 0.18um CMOS,” IEEE Mediterranean Electrotechnical Conference, 2010, pp. 280-285.
[15] H. Alzaher, and M. Ismail, “A CMOS Fully Balanced Differential Difference Amplifier and Its Applications,” IEEE Trans. on Circuits and Systems II, vol. 48, no. 6, pp. 614-620, Jun. 2001.