簡易檢索 / 詳目顯示

研究生: 梁紘輔
Liang, Hong-Fu
論文名稱: 細流道填充過程之熱傳研究
Heat Transfer in the Filling Process inside a Small Channel
指導教授: 李雄略
Lee, Shong-Leih
口試委員: 陳志臣
Chen, Jyh-Chen
傅武雄
Fu, Wu-Shung
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 41
中文關鍵詞: 計算流體力學溫度場熱傳量自由液面
外文關鍵詞: CFD, temperature field, heat transfer, free surface
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將進行細流道填充過程的水平流場與溫度場計算,研究雷諾數、自由液面接觸角和毛細數對溫度場的影響。本研究採用最小平方法找出最接近自由液面的圓,並將此圓的半徑倒數當作此自由液面的曲率並除以毛細數當作此自由液面的壓力來計算流場。利用能量方程式來計算出溫度場,進而求解出平板的熱傳量分布情形。對於溫度場與熱傳量的影響以雷諾數影響最大,自由液面接觸角與毛細數對溫度場與上平板熱傳量幾乎沒有影響。同時熱傳量在靠近自由液面的部分會些微上升。


    To study the change of Reynolds number , contact angle and Capillary number in mold-filling process, we simulating a Horizontal flow field and the temperature field. In this study, the least squares method is used to find the circle closest to the free surface, and the reciprocal of the radius of the circle is taken as the curvature of the free surface and divided by the capillary number as the pressure of the free surface to calculate the flow field. Using the energy equation to calculate the temperature field, and then solve the heat transfer distribution on the plate. The influence of temperature field and heat transfer has the greatest effect on Reynolds number, and the contact angle and capillary number have little effect on them. The heat transfer near the free surface will be slightly increased.

    摘要 I 目錄 III 圖目錄 V 符號表 VI 第一章序論 1 1.1 前言 1 1.2 文獻回顧 1 1.3研究方法與目的 2 第二章問題描述與統御方程式 4 2.1問題描述 4 2.2統御方程式 4 第三章數值方法 8 3.1 網格系統 8 3.2動量方程式差分方法 8 3.3能量方程式差分方法 10 3.4 NAPPLE法則 11 3.5自由液面接觸角修正 13 3.6自由液面的壓力給定 14 3.7鬼點計算 14 3.8收斂標準 15 第四章案例模擬 16 4.1填充過程於兩無窮長平行板間 16 4.2初始條件與邊界條件給定 16 4.3計算流場 17 4.4結果與討論 18 第五章結論 22 參考文獻 23 附圖 25

    [1] Rose, W., “Fluid-fluid interfaces in steady motion,” Nature, 191, pp. 242-243 (1961).
    [2] Rose, W. and Heins, R. W., “Moving interfaces and contact angle rate-dependency,” Journal of Colloid Science, 17, pp. 39-48 (1962)
    [3] Coyle, D. J., Blake, J. W. and Macosko, C. W., “The kinematics of fountain flow in mold filling,” AIChE Journal, 33, pp. 1168-1177 (1987).
    [4] Mavridis, H., Hrymak, A. and Vlachopoulos, J., “Finite element simulation of fountain flow in injection molding,” Polym. Eng. Sci, 26, pp. 449-454 (1986).
    [5] Gogos, C.G. and Huang, C.F., “The process of cavity filling including the fountain flow in injection molding,” Polym. Eng. Sci, 26, pp. 1457-1466 (1986).
    [6] Kamal, M.R., Chu, E. and Lafleur, P.G., “Computer simulation of injection mold filling for viscoelastic melts with fountain flow,” Polym. Eng. Sci, 34, pp. 190-196 (1988).
    [7] Behrens, R.A., Crochet, M.J., Denson, C.D. and Metzner, A.B., “Transient free-surface flows: motion of a fluid advancing in a tube,” AIChE Journal, 33, pp. 1178-1186 (1987).
    [8] Sobhan, C. B. and Garimella, S. V., “A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels,” Microscale Thermophys. Eng, 5, pp. 293–311 (2001).
    [9] Sobhan, C. B. and Garimella, S. V., “Transport in Microchannels—A Critical Review,” Annu. Rev. Heat Transfer, 13, pp. 1–50 (2003).
    [10] Garimella, S. V. and Singhal, V., “Single-Phase Flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks,” Heat Transfer Eng, 25, pp. 15–25 (2004).
    [11] Liu, D. and Garimella, S. V., “Investigation of Liquid Flow in Microchannels,” J. Thermophys. Heat Transfer, 18, pp. 65–72 (2004).
    [12] Gopinath, R. W., Vijay, K. D. and Leslie, A. M., “Heat transfer and pressure drop in narrow rectangular channels,” Experimental Thermal and Fluid Science, 26, pp. 53–64 (2002).
    [13] Lee, S.L. and Liao, W.C., “Numerical simulation of a fountain flow on nonstaggered Cartesian grid system,” Int. J. Heat Mass Transfer, 51, pp. 2433-2443 (2008).
    [14] Lee, S.L. and Tzong, R.Y., “An enthalpy formulation for phase change problems with a large thermal diffusivity jump across the interface,” Int. J. Heat Mass Transfer, 34, pp. 1491-1502 (1991).
    [15] Lee, S.L. and Tzong, R.Y., “Artificial pressure for pressure-linked equation,” Int. J. Heat Mass Transfer, 35, pp. 2705-2716 (1992).
    [16] Lee, S. L., “A strongly implicit solver for two-dimensional elliptic differential equations,” Numerical Heat Transfer, 16, pp. 161-178 (1989).
    [17] Lee, S.L. and Sheu, S.R., “Filling process in an open tank,” ASME J. Fluids Eng, 125, pp. 1016-1021 (2003).

    QR CODE