簡易檢索 / 詳目顯示

研究生: 邱奕誠
Yi-Cheng Chiu
論文名稱: 應用中截投影定理估計物體對稱軸以對取像存在角差之影像作修正
Correcting the angular displacement of image captured by estimating the axis of symmetry utilizing the Central Slice Projection Theorem.
指導教授: 彭惠
Hui Peng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 43
中文關鍵詞: 對稱軸中截投影定理影像修正角差現象線性相位
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 徒手持相機取像時,可能因手振晃動或其它人為因素,使成像有偏斜(存在角差)。在本論文中,我們提出一方法,係利用左右對稱取像標的物(如人體)對稱軸與重力方向同向的事實,希望據以藉由電腦輔助估計一影像在取像時歪斜的程度(旋轉軸在鏡頭中心軸方向情況),並加以調整改善。

    我們所根據的是:(1)左右對稱物體(但存在有角差情況)在該角度之投影值亦會呈現左右對稱情況(除有一位移外);(2)由中截投影定理(Central Slice Projection Theorem),原物體於二維富氏轉換後之極座標表示中,其相位(phase)於上述角度處,當對稱物位置及偏斜度符合合理限制下(本論文中有推得相關條件),在一定範圍內具線性特性。之後,我們找出富氏轉換相位(phase)在(2)中所提上述範圍內最具線性性質之角度(採用Least square fitting方式),並以之為偏斜角度估計值。有了估計的偏斜角度,即可透過反旋轉作修正。

    我們針對所提方法,以模擬對稱圖形及實際存在左右對稱物(人)之影像作測試,發現所提方法在對影像加入二值化前處理後相當可行,其中估計偏斜準確度可達1°範圍。除了對稱軸角度外,本論文所提方法可附帶推算出對稱軸所在位置,亦可使用於需找對稱軸之其它影像應用。


    摘 要 第一章 簡介..............................................1. 第二章 背景知識及偶函數富氏轉換特性 2.1中截投影定理(CSPT).............................3. 2.2由Cartesian至Polar的內插演算法..................5. 2.3 偶函數的富氏轉換特性 2.3.1 實偶函數富氏轉換及其phase特性...........7. 2.3.2 存在位移之偶函數其富氏轉換phase特性 ...10. 2.3.3 存在位移之偶函數其富氏轉換有線性phase之 條件及範圍................. ............12. 第三章 運用CSPT對取像存在角差之影像作修正 3.1 構想................................ .........15. 3.2 適用範圍............................ .........16. 3.3 運用CSPT對取像存在角差之影像作修正之作業流 程............................ ...............18. 第四章 實驗結果 4.1 測試結果......... ............................24. 4.2 結果分析與比較................. ..............36. 第五章 結論與討論................... ....................38. 註2.1...................................................40. 參考文獻............................................ ....42.

    [1] R.N. Bracewell, “Strip intergration in radio astronomy,” Aust. J.Phys., 9, 198-217, 1956.

    [2] H. Peng, and H. Stark, “Direct fourier reconstruction in Fan-Beam tomography,”, IEEE Trans. on Medical Image, Vol. mi-6, No. 3, September 1987. pp.209-219.

    [3] S. Derrode, and F. Ghorbel,“Shape analysis and symmetry detection in gray-level objects using the analytical Fourier–Mellin representation,” Signal Processing, Vol. 84, No. 1, January 2004. pp. 25-39.

    [4] B. Rousso, S. Avidan, A. Shashua, and S. Peleg , “Robust recovery of camera rotation from three frames,” Computer Vision and Pattern Recognition, 1996. Proceedings CVPR '96, 1996 IEEE Computer Society Conference on 18-20 June 1996 Page(s):796 – 802.

    [5] R.K.K. Yip, “A Hough transform technique for the detection of reflectional symmetry and skew-symmetry,” Pattern Recognition Letters, Vol. 21, No. 2, February 2000. pp. 117-130.

    [6] T.J. Cham, and R. Cipolla, “Symmetry detection through local skewed symmetries,” Image and Vision Computing Vol. 13, No. 5, June 1995. pp. 439-450.

    [7] Y. Lei, and K.C. Wong, “Detection and localisation of reflectional and rotational symmetry under weak perspective projection,” Pattern Recognition Vol. 32, No. 2, 1999. pp. 167-180.

    [8] D. Shen, H.H.S. Ip, and E.K. Teoh , “Robust detection of skewed symmetries by combing local and semi-local affine invariants,” Pattern Recognition, Vol. 34, No. 7, 2001. pp. 1417-1428.

    [9] W. Wen, and B. Yuan, “Skewed symmetry detection of closed contours based on their geometric properties,” Computer Architectures for Machine Perception, 1995. Proceedings. CAMP '9518-20 Sept. 1995 Page(s):161 – 168.

    [10] J.M. Inesta, M. Buendia, and M.A. Sarti, “Local symmetries of digital contours from their chain codes,” Pattern Recognition Vol. 29, No. 10, 1996. pp. 1737-1749.

    [11] C. Sun, “Symmetry detection using gradient information,” Pattern Recognition Letters, Vol. 16, No. 9, September 1995. pp. 987-996.

    [12] C. Sun., and D. Si., “Fast reflectional symmetry detection using orientation histograms,”Real-Time Imagine. Vol. 5, No. 1, February 1999. pp. 63-74.

    [13] D. Shen, H.H.S. Ip, and E.K. Teoh, “An energy of asymmetry for accurate detection of global reflection axes,” Image and Vision Computing, Vol. 19, No. 5, April 1, 2001. pp. 283-297.

    [14] C.E. Shannon,“Communication in the presence of noise,” In Proceedings of IRE, Vol. 38, No. 4, April 1950. pp.417-425.

    [15] G. Iannizzotto, P. Lanzafame, and F. L. Rosa, “A CNN-based framework for 2D still-image segmentation,”Computer Architecture for Machine Perception, 2005. CAMP 2005. Seventh International Workshop on Proceedings. 4-6 July 2005 Page(s):210 – 215.

    [16] A.K. Jain, Fundamentals of digital image processing, Prentice Hall, 1989.

    [17] S.M. Kao, T.K. Ning, C.W. Wu, and H. Peng, “Extraction of the focused object in an image by filtering out the defocused background,” In Proceeding of IEEE 1994 International Symposium on Speech, Image Processing, &Neural Networks, Hong Kong, April 13-16, 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE