研究生: |
楊祖成 Yang, Chu-Chen |
---|---|
論文名稱: |
直接式向量控制感應馬達應用於電液靜壓傳動系統之分析 Analysis of Electro-Hydrostatic Transmission System with Induction Motor Driven by Direct Vector Control |
指導教授: |
王培仁
Wang, Pei-Jen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 直接式向量控制 、電液靜壓傳動 、泵控系統 |
外文關鍵詞: | Direct Vector Control, Eletro-hydrostatic Transmission, Pump-controlled System |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來電液靜壓傳動系統因為能源效率高,已逐漸成為重型設備產業之應用重心,但系統複雜度與設計分析難度卻使廠商卻步不前,本論文的研究目的在藉由結合多領域電腦輔助工程軟體,進行高效率與高響應速度之電液靜壓傳動系統之設計與分析。現今電液靜壓傳動系統主要是由變頻馬達、定排量泵與液壓致動器三大部分所組成,其優點為系統架構簡單、高效率及高響應速度。本研究以選定之感應馬達為動力源,經直接式轉子磁通導向向量控制為進行感應馬達之變頻控制,並佐以無感測迴授式驅動法則,構成高強健性之模式參考適應控制器;本研究選擇變頻馬達驅動定排量泵來構建電液靜壓傳動系統,達成泵控系統之高效率的特性,並經速度迴授反饋控制馬達轉速,不但控制液壓致動器之輸出速度,同時提升系統之應答速度,最後並探討未來考發展之應用空間,期望藉由多領域之電腦輔助工程分析技術,期能提供液壓工程師設計與分析電液靜壓系統之參考資訊。
Electro-hydrostatic transmission systems well know for high energy efficiency have been the focus of research recently. However, the progress of development has been sluggish due to the complexity in systems and difficulty in design and analysis. The objectives of this thesis are to study the design and analysis of the eletro-hydrostatic transmission systems via multi-domain computer-aided engineering software on pursuing high energy efficiency and dynamic responses. It is noted that there are three main subassemblies in the systems, namely an inverter-controlled induction motor, a fixed-displacement pump, and a hydraulic actuator, which contribute to the advantages as structure simplicity, high efficiency, and fast responses. This study has employed the ac induction motor for the power primer with the help of rotor-flux vector-controlled inverter plus sensorless speed feedback in adaptive control method with high robustness. In this thesis, inverter-controlled induction motor has been adopted for establishing the pump-controlled electro-hydrostatic systems so that the high energy efficiency and fast responses can be maintained via actuator speed feedback to the inverter controller. Finally, the simulated results based upon the multi-domain software are promising for the hydraulic engineers in the design and analysis of electro-hydrostatic transmission systems.
[1] G. R. Kotz and M. P. Pegan, “Motor Applications for Hydr- aulic Roll Crushers,” the 36th IEEE-Conf. Cement Industry Technical Conference, pp.99-116, 1994.
[2] H. Murrenhuff, “Innovation in der Fluidtechnik,” Proc. of l. International Fluid Power Conference, Aachen, Germany, Vol. 1, pp.22-58, 1998.
[3] 黃強, ”電液靜壓傳動於液壓系統省能運轉之探討, ”國立台灣科技大學,自動化與控制研究所碩士學位論文, 2003。
[4] P. W. Wheeler, J. C. Clare, M. Apap, L. Empringham, and K. J. Bradley, “A Matrix Converter Based Permanent Magnet Motor Drive for an Electro-Hydrostatic Aircraft Actuator,” 29th Conf. Rec. IEEE-Industrial Electronics Science, Vol. 3, pp. 2072-2077, 2003.
[5] H. Tajima and Y. Hori, “Speed Sensorless Field-Orientation Control of the Induction Machine,” IEEE Transactions on Industry Applications, Vol.29, Issue 1, pp.175-180, 1993.
[6] T. Yamada, K. Matsuse, and K. Sasagawa, “Sensorless Control of Direct-Field-Oriented Induction Motor Operating at High Efficiency using Adaptive Rotor Flux Observer,” IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation, Vol. 2, pp.1149 -1154, 1996.
[7] M. N. Marwali and A. Keyhani, “A Comparative Study of Rotor Flux Based MRAS and Back EMF Based MRAS Speed Estimators for Speed Sensorless Vector Control of Induction Machines,” IEEE Industry Applications Conference, 1997. Thirty-Second IAS Annual Meeting, IAS '97., Vol. 1, pp.160-166, 1997.
[8] C. Schauder, “Adaptive Speed Identification for Vector Control of Induction Motors without Rotational Transducers,” IEEE Transactions on Industry Applications, Vol.28, Issue 5, pp.1054-1061, 1992.
[9] F. Z. Peng and T. Fukao, “Robust Speed Identification for Speed Sensorless Vector Control of Induction Motors,” IEEE Transactions on Industry Applications, Vol.30, Issue 5, pp.1234-1240, 1994.
[10] L. Elloumi, L. Ben-Brahim and M. A. Al-Hamadi, “Survey of Speed Sensorless Controls for IM drives,” Industrial Electronics Society, 1998. IECON '98., 24th Annual Conference of the IEEE, Vol.2, pp.1018-1023, 1998.
[11] A. J. Lin, R. J. Wai and P. C. Lin, “Robust Speed Sensorless Induction Motor Drive,” IEEE Transactions on Aerospace and Electronic Systems, Vol.35, Issue 2, pp.566-578, 1999.
[11] YUKEN 油壓機器 Hydraulic Equipment, '98/'99, 油研工業株式會社.
[12] E. C. Fitch and I. T. Hong, Hydraulic Component Design and Selection, BarDyne, Inc., 1997.
[13] 劉昌煥著,「交流電機控制-向量控制與直接轉矩控制原理」,東華書局,第二版,2003。
[14] F. Z. Peng, “Speed and Flux Sensorless Field Oriented Control of Induction Motors for Electric Vehicles,” IEEE-Applied Power Electronics Conference and Exposition, APEC 2000 15th, Vol. 1, pp.133-139, 2000.
[15] A. E. Fitzgerald, C. Kingsley, Jr., and S. D. Umans, Electric Machinery, McGraw-Hill, Inc., 5th edition, 1990.
[16] P. A. Ioannou and J. Sun, Robust Adaptive Control, Prentice-Hall International, Inc.,1996.