簡易檢索 / 詳目顯示

研究生: 楊可親
Ke-Chin Yang
論文名稱: 鈦基塊狀非晶材料之開發
The Study of Ti-Based Bulk Metallic Glasses
指導教授: 金重勳
Tsung-Shune Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 87
中文關鍵詞: 鈦基非晶
外文關鍵詞: Ti-based, amorphous
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦金屬擁有很好的機械性質,鈦基非晶合金的研究也久,但是發展的規模因為鈦的非晶能力不佳而有限。本研究希望可以開發出新成分鈦基塊狀非晶合金,且擁有良好的非晶能力。以二(Ti-Co)元和三元(Ti-Co-M)合金為研究的目標,利用銅模快速冷卻,希望得到塊狀非晶合金。接者做X-ray、DTA等各項分析。在Ti60Co40遠離共晶點的地方,得到一最好的非晶能力,但除非晶之外,仍然有奈米結晶的析出,Ti60Co40的Tg是925 K、Tx是980 K。三元方面是以二元最好的成分Ti60Co40做為基礎,先加入少量的Ni、Sn、Y、Zr等金屬,鑄造1mm的棒材,在加入Ni或Zr的合金中觀察到較好的結果。接著再分別改變Ni和Zr的含量,分析其對合金的非晶能力有何影響。在加入Ni的合金中以Ti60Co20Ni20擁有最好的非晶能力,但在非晶中仍有奈米結晶的析出,Ti60Co20Ni20的Tx是986 K。在Ti-Co中加入少量的Zr,就有相當大的影響,擁有最佳非晶能力的合金成份是Ti60Co36Zr4加入Ni或Zr的三元合金中對於1mm鑄棒的合金無法形成全非晶,還是有大小在10 nm左右的晶粒會析出,Ti60Co36Zr4的Tg是989 K、Tx是1052 K。


    Amorphous Ti-based alloys show good mechanical properties and have been investigated for a long time. However, the glass forming ability (GFA) of titanium alloys is not promising so that the development of Ti-based BMGs has been limited. The purpose of this study is to develop the new composition of Ti-based BMGs which have good GFA. The study focused on binary Ti-Co and ternary Ti-Co-M systems. The best composition we evaluated is Ti60Co40 that is far from the eutectic point in Ti-Co binary system. This is the best glass former though it consists of mixed crystalline and amorphous phases. The glass transition temperature of Ti60Co40 is 925 K and the crystalline temperature is 980 K. The nickel, tin, yttrium and zirconium were subsequently added into the binary system individually to cast cylinder with 1 mm in diameter. It shows better GFA with the addition of nickel or zirconium. The best composition of Ti-Co-Ni is Ti60Co20Ni20. The crystalline temperature of Ti60Co20Ni20 is 986 K While the best result of Ti-Co-Zr is Ti60Co36Zr4. Both systems consist of amorphous and crystalline and the size of the crystalline is about 10 nm. The glass transition temperature of Ti60Co36Zr4 is 989 K and the crystalline temperature is 1052 K.

    目錄 表目錄 3 圖目錄 4 摘要 7 中文摘要 7 Abstract 8 第一章 導論 9 前言 9 研究動機 10 第二章 文獻回顧及原理 12 2.1文獻回顧 12 2.2實驗原理 16 2.2.1符號的物理意義 17 2.2.2非晶形成能力(GFA) 18 2.2.3相圖 19 2.2.4 結晶的形成 20 2.2.5 非晶的形成 23 2.2.6 非晶形成的三大準則 24 2.3合金製備 26 2.2.1非晶態合金製備方法 26 2.2.2 濺射和蒸發沉積法 29 2.2.3 離子植入法 29 2.2.4 化學沉積法和電沉積法 30 2.5.5 噴濺急冷和噴射沉積法 30 2.2.6 粉末製備 30 2.2.7 熔體急冷法 32 2.3非晶的優異性質 35 2.3.1機械性質: 35 2.3.2抗腐蝕性: 36 2.3.3電性質: 36 2.3.3磁性質: 37 2.3.3其他性質: 37 第三章 實驗步驟 38 3.1合金系統的設計與製備 38 3.1.1合金系統的設計 38 3.1.2合金系統的製備方法 40 3.2分析與量測 44 第四章 結果與討論 46 4.1二元鈦基 46 4.1.1 Ti-Co合金非晶形成能力 47 4.1.2共晶點對於非晶合金的意義 55 4.2三元鈦基合金 60 4.2.1不同元素對Ti-Co非晶形成能力的影響 60 4.2.2 Zr含量對Ti-Co非晶形成能力的影響 62 4.2.3 Ni含量對Ti-Co非晶形成能力的影響 68 第五章 結論 75 5.1二元系統 75 5.2三元系統 76 5.2.1 Ti-Co-Ni 76 5.2.2 Ti-Co-Zr 76 5.3結論與未來工作 77 參考文獻 79 表目錄 表4-1 49 表4-2 51 表4-3 53 表4-4 61 表4-5 66 表4-6 68 表4-7 73 表4-8 74 圖目錄 圖2-1 20 圖2-2 24 圖2-3 26 圖2-4 33 圖2-5 34 圖2-6 35 圖2-7 36 圖3-1 39 圖3-2 40 圖3-4 42 圖4-1 47 圖4-2 48 圖4-3 48 圖4-4 49 圖4-5 50 圖4-6 51 圖4-7 52 圖4-8 53 圖4-9 54 圖4-10 55 圖4-11 56 圖4-12 58 圖4-13 59 圖4-14 61 圖4-15 63 圖4-16 65 圖4-17 66 圖4-18 68 圖4-19 69 圖4-20 69 圖4-21 70 圖4-22 71 圖4-23 72 圖4-24 73 圖4-25 73 圖4-26 74 圖4-27 74 圖4-28 77 圖4-29 77 圖4-30 78

    參考文獻
    [1] J. Kramer, Annln Phys., Vol 37, p.19, 1934.
    [2] J. Kramer, Z. Phys., Vol 106, p.639, 1937.
    [3] A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand., Vol 44, p.109, 1950.
    [4] W. Klement, R. H. Willens, and P. Duwez, Nature, 187, p.869, 1960.
    [5] P. Duwes, Trans. Am. Soc. Metals, Vol 60, p.607, 1967
    [6] H. S. Chen, Rep. Prog. Phys., 43, p.353, 1980.
    [7] H. W. Kui, A. L. Greer and D. Turnbull, Appl. Phys. Lett., 45, p.615, 1984.
    [8] H. W. Kui and D. Turnbull, Appl. Phys. Lett., 47, p.796, 1985.
    [9] A. Inoue, K. Ohtera, K. Kita and T. Masumoto, Japan. J. Appl.
    Phys., 27, L2248, 1988.
    [10] A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. Japan. Inst. Metals, 30, p.965, 1989.
    [11] A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. Japan. Inst. Metals, 31, p.177, 1990.
    [12] A. Peker and W. L. Johnson, Appl. Phys. Lett., 63, p.2342,
    1993.
    [13] A. Inoue and N. Nishiyama and T. Matsuda, Mater. Trans.
    Japan. Inst. Metals, 37, p.181, 1996.
    [14] R. B. Schwarz and Y. He, Mater. Sci. Forum, 235-238, p.231,
    1997.
    [15] T. Zhang and A. Inoue, Mater. Trans. Japan. Inst. Metals, 39,
    p.1001, 1998.
    [16] T. Zhang and A. Inoue, Mater. Trans. Japan. Inst. Metals, 40, p.301, 1999.
    [17] A. Inoue and J. S. Gook, Mater. Trans., JIM, 36. p.1180, 1995.
    [18] A. Inoue, Y. Shinohara and J. S. Gook, Mater. Trans., JIM, 36,
    p.1427, 1995.
    [19] A. Inoue and R. E. Park, Mater. Trans., JIM, 37, p.1715, 1996.
    [20] A. Inoue, A. Murakami, T. Zhang and A. Takeuchi, Mater. Trans., JIM, 38,, p.189, 1997.
    [21] T. Mizushima, A. Inoue and T. Masumoto, IEEE Trans. Magn., 33, p.3784, 1997.
    [22] A. Inoue, Mater. Sci. Eng., A226-A228, p.357, 1997.
    [23] A. Inoue, T. Zhang and T. Itoi, Mater. Trans., JIM, 38, p.359, 1997.
    [24] A. Inoue, M. Koshiba, T. Zhang and A. Makino, Mater. Trans., JIM, 38, p.577, 1997.
    [25] A. Inoue, M. Koshiba, T. Zhang and A. Makino, J. Appl. PH\hys., 83, p.1967, 1998.
    [26] A. Inoue and A. Makino, Nanostruct. Mater., 9, p.403, 1997.
    [27] A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum, 269-272, p.855, 1998.
    [28] A. Inoue and W. Zhang, J. Appl. Phys., 85, p.000, 1999.
    [29] Myung Wn, Kim HG, Masumtoto T ,Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing 179: 252-255 MAY 1 1994
    [30] Inoue, Akihisa; Nishiyama, Nobuyuki; Amiya, Kenji; Zhang, Tao; Masumoto, Tsuyoshi, Materials Letters. Vol. 19, no. 3-4, pp. 131-135. 1994.
    [31] D. V. Louzguine ,A. Inoue Journal of Materials Science Volume 35, 2000.
    [32] School of Mechanical and Production Engineering, Nanyang
    Technological University, Nanyang Avenue 639798, Singapore
    Received 24 July 2002.
    [33] Akihisa Inoue, Nobuyuki Nishiyama1, Kenji Amiya2, Tao Zhang
    and Tsuyoshi Masumoto Institute for Materials Research,
    Tohoku University, Sendai 980, Japan
    [34] T. Zhang, A. Inoue, Mater. JIM 39 (1998) 1001.
    [35] S.p. Alisova, N.V Volynskaya, P.B. Budberg, A.N. Kobylkin,
    Russ. Metall. 5 (1986)207.
    [36] L.E. Tanner, R. Ray, Scr. Metall. 11 (1977) 783.
    [37] T. Zhang, A. Inoue, T.Masumoto, Mater. Sci. Eng.
    A181 & A182 (1994)131.
    [38] A. Inoue, N. Nishiyama, K. Amiyam, T. Zhang, T. Masumoto,
    Mater. Lett. 19 (1994)131.
    [39] Zhang, Tao; Inoue, Akihisa Materials Transactions, JIM
    (Japan).Vol. 39, no. 10, pp. 1001-1006. Oct. 1998.
    [40] X.H. Lina) and W.L. Johnson W.M.Kerck Laboratory of
    Engineering Materials, Caltfornta Institute of Technology,
    Psasdena, Californai 91125 1995.
    [41] Zhang, T; Inoue, A Materials Transactions, JIM (Japan).
    Vol.40, no. 4, pp. 301-306. Apr. 1999.
    [42] G.Hea), Janan, J.Eckert, Germany, M. Hagiwara, Japan 2003
    [43] W.B. Sheng * Department of Mechanical Engineering,
    Shandong University of Technology, NO. 12 Zhangzhou Road,
    Zhanfdian District. Zibo City, Shandong 255049, People’s
    Republic of China 2004.
    [44] Y.C. Kim, W.T. Kim, D.H.Kim a Departement of Metalhrgical Engineering, Center for Nancrystalline Materials, Yonsei University, 134 Shinchon-dong, Seodaemm-ku, Seoul
    120-749,South Korea b Division of Applied Science, Chongju
    University, Chongju 360-764, South Korea.
    [45] W.B. Sheng Department of Mechanical Engineering,
    Shandong University of Technology, NO. 12 Zhangzhou Road,
    Zhanfdian District. Zibo City, Shandong 255049, People’s
    Republic of China 2004.
    [46] W.B. Sheng * Journal of Non-crystalline Solids 351 (2005)
    3081-3086 351.
    [47] 何聖靜、高莉如,非晶態材料及其應用,機械工業出版社,1987。
    [48] F. E. Luborsky, “Amorphous Metallic Alloys”, Butterworths
    Monographs in Materials, London, UK, p.19-20, 1983.
    [49] D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, Chapman and Hill, New York, USA, p.186-197, 1991.
    [50] 王一禾、楊膺善,非晶態合金,冶金工業出版社,1989。
    [51] A. Inoue, Mater. Trans. Japan. Inst. Metals, 36, p.886, 1995.
    [52] A. Inoue, Mater. Sci. Eng., A226-A228, p.357, 1997.
    [53] A. Inoue, T. Zhang and A. Takeuchi, Mater. Sci. Forum, 269-272, p.855, 1998.
    [54] A. Inoue, A. Takeuchi and T. Zhang, Metall. Mater. Trans., 29A, p.1779, 1998.
    [55] A. Inoue, “Bulk Amorphous Alloys”, Trans Tech Publications, Zurich, 1999
    [56] A. Inoue and Rae Eun Park, Materials Transactions, JIM, vol 37, No 11, p.1715, 1996.
    [57] 黃森煥,金重勳,快速凝固法研製稀土-過渡元素合金及其基本特性探討,國立清華大學博士論文,中華民國八十年七月。
    [58] R. C. Ruhl, Mater. Sci. Engng, 1, 313 (1967)
    [59] M. R. Bennett, and J.G.Wright, Phys. Status Solidi (a), 13, 135, 1972.
    [60] P. K. Leung, and J. G.Wright, , Phil. Mag., 30, 995, 1974.
    [61] 王一禾、楊膺善,非晶態合金,冶金工業出版社,1989。
    [62] 非晶質金屬漫談 鄭振東 編譯
    [63] Binary phase diagram.
    [64] D. Ma.a) H. Tan, D. Wang. and Y.Lib) Department of Materials Science, National University of Singaporem Singapore 119260, Singapore E. Ma Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218.
    [65] Inoue A, Zhang W ,MATERIALS TRANSACTIONS 45 (2):
    584-587 FEB 2004.
    [66] Cohesion in Metals transition metal alloys, F.R. de boer, R. Boom, W. C. M. Mattens, A.R. Miedma, A. K. Niessen.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE