簡易檢索 / 詳目顯示

研究生: 黃勖維
論文名稱: 奈米流體熱流性質研究
The thermal property of nanofluid
指導教授: 許文震
W. J. Sheu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 84
中文關鍵詞: 奈米流體熱傳導係數黏滯係數磁性流體磁場
外文關鍵詞: nanofluid, thermal conductivity, viscosity, ferrofluid, magnetic field
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在流體裡面加入奈米粒子,並加入一些界面活性劑使奈米粒子可以均勻分散在流體裡面,稱之為奈米流體。由於奈米流體可以大幅增加流體的熱傳導係數,且隨著濃度的越高,其增加的熱傳導係數越大。本論文在探討一些奈米流體的熱傳導係數,有用化學還原法合成成奈米金水溶液,金的大小尺寸為20nm。也有測量奈米銀的水溶液。更進一步在水和乙二醇裡加入三氧化二鋁和氧化銅粒子,驗證其熱傳導係數有無增加和黏滯係數的增加量,並探討其熱傳增加的機制。
    在奈米流體實驗的部分,利用暫態熱線法和穩態平行板法兩種方法來量測熱傳導係數。其中暫態熱線法量測儀器為自行組裝。探討濃度和熱傳導係數的關係,發覺在三氧化二鋁,氧化銅的奈米流體裡,熱傳導係數會隨著體積分率的增高而有所增加,且奈米氧化銅粒子較三氧化二鋁小,所以對增加流體的熱傳導係數的效果較為明顯。並利用改變酸性來增加三氧化二鋁在水中的分散性,發現有加酸的奈米流體分散較好,熱傳導係數較高,且黏滯係數較低。而在磁性流體方面,磁性流體的熱傳導係數變化會隨著磁場的增大而有所增加,但隨著磁性流體的達到飽和磁化,而不再增加;且隨著不一樣的磁場方向,熱傳導係數會跟著有所變化。


    Nanofluid is a fluid of new type that consists of a base liquid with nanocrystalline particles dispersing in it. With the capability of higher thermal conductivity, the nanofluid has received considerable attention in related thermal management laboratories. In the present study, water and ethylene glycol are used as the base liquids respectively. The gold, silver, CuO and Al2O3 nanoparticles are added in the base liquids. Effects of volume fraction and size of nanoparticles on the viscosity and thermal conductivity of nanofluids are investigated by experiment. The thermal conductivity of nanofluids is measured by the steady-state parallel plate and transient hot-wire methods, respectively. Results here include (i) the homemade equipment to measure the effective thermal conductivity (ii) the measurement of thermal conductivity and viscosity (iii) the measurement of properties of nanofluids of various types. The results show that the thermal conductivity of the nanofluid increases with the volume fraction of the nanoparticles. Besides, the thermal conductivity of the nanofluids increases with decreasing the size of nanoparticles. In addition, the acid liquid is found to achieve a better dispersion of the nanoparticles in nanofluids. The better dispersion of nanoparticles also results in a lower viscosity and higher thermal conductivity of nanofluids. For ferrofluids, the thermal conductivity of ferrofluids increases with the strength of applied magnetic field. However, the thermal conductivity of the ferrofluid no longer increases as the applied magnetic field reaches a critical strength. The thermal conductivity of the ferrofluids varies with the direction of the magnetic fields. The data and the experience obtained in this work are significant for the research institutes to further develop the nano-technology.

    目錄 摘要 I 英文摘要 II 致謝 III 目錄 VI 表目錄 VII 圖目錄 VIII 第一章 導論 1 1-1 前言(奈米流體) 1 1-1.1 前言(奈米流體) 1 1-1.2 研究動機 2 1-1.3 文獻回顧 2 1-2 前言(磁性流體) 4 1-2.1 前言(磁性流體) 4 1-2.2 研究動機 4 1-2.3 文獻回顧 5 第二章 理論分析 7 2-1 奈米金屬微粒的合成 7 2-2 磁場的觀念 9 2-2.1 磁場單位探討 9 2-2.2 材料磁化特性 11 2-2.3 一般磁性固體磁滯曲線 11 2-2.4 一般磁性流體磁滯曲線 12 2-3 磁性流體穩定性分析 14 2-3.1 磁性流體動力穩定性 14 V 2-3.2 磁性流體聚集穩定性 16 2-4 熱傳導係數 18 2-4.1 布朗運動 18 2-4.2 固-液間的規則液體層 21 2-4.3 考慮固態液體層所造成的影響 22 2-4.4 奈米微粒聚集的效應 24 2-4.5 傳統的兩項流理論分析整理 24 2-5 黏滯係數 25 第三章 實驗方式 35 3-1 測量熱傳導係數的方法 35 3-1.1 暫態線金屬法 35 3-1.2 穩態平行板法 38 3-2 測量黏滯係數的方法 39 3-2.1 旋轉黏度計 39 3-2.2 玻璃毛細管黏度計 39 3-3 關於磁場架設的部分 40 第四章 實驗結果與討論 48 4-1 實驗方法比較 48 4-2 奈米流體量測記錄 48 4-2.1 奈米金水溶液 48 4-2.2 奈米銀水溶液 50 4-2.3 乙二醇加入氧化銅奈米粉末 51 4-2.4 水加入三氧化二鋁奈米粉末比較 51 4-2.5 乙二醇加入Al2O3 的黏滯係數 54 4-3 磁性流體在磁場之下的性質比較 55 4-3.1 在不同磁場底下的熱傳導係數 55 4-3.2 在不同磁場底下的黏滯係數 57 VI 第五章 結論與建議 75 第六章 參考書目 78 第七章 附錄 81 7-1 計算熱傳導係數 81 7-2 熱線法不準度分析 83

    1. .S. Lee, S. Choi, S. Li, and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME Journal of Heat Transfer, vol. 121, pp. 280-289, 1999.
    2. .X. Wang, X. Xu, and S. Choi, Thermal conductivity of nanoparticle -fluid mixture, Journal of thermophysics and heat transfer, vol. 13, No4, pp. 474-480, 1999.
    3. .C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed, pp. 435-441, 1904.
    4. ..R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind&Engr. Chem. Fundamental, pp. 187-191, 1962.
    5. .K. V. Liu and S. Choi, Measurments of pressure drop and heat transfer in turbulent pipe flows of particulate slurries. report, Argonne National Laboratory ANL-88-15, 1988.
    6. S. Choi, Enhancing thermal conductivity of fluids with nano-particles. ASME Fluids engineering division, vol. 231, pp. 99-105, 1995.
    7. .J. A. Eastman, S. Choi, S. Li, G. Soyez, L. J. Thompson, and R. J. Di Melfi, Novel thermal properties of nanostrucred materials, Master. sci. forum, pp. 312-314, 1999.
    8. .P. Keblinski, S. R. Phillpot, S. Choi, and J. A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles(nanofluids), International Journal of heat and mass transfer, vol. 45, pp. 855-863, 2002
    9. .Q. Z. Xue, Model for effective thermal conductivity of nanofluid, Physics letters A , vol. 307, pp. 313-317, 2003.
    10. S. P. Jang and S. Choi, Role of Brownian motion in the enhance thermal conductivity of nanopartles, Applied physics letters, vol.84, pp. 4316-4318, 2004
    11. V. E. Fertman, Magnetic fluids guidebook : properties and applicat ions, New York: Hemisphere pub. Corp.,1990.
    12. C. Tangthieng , B. A. Finlayson , J. Maulbetsch , and T. Cader , Heat transfer enhancement in ferrofluids subjected to steady magnetic fields, Journal of magnetism and magnetic materials, vol. 201, pp. 252-255, 1999.
    13. R. E. Rosensweig, Heating magnetic fluid with alternating magnetic field, Journal of magnetism and magnetic materials, vol. 252, pp. 370-374, 2002.
    14. J. P. Mctague, Magnetoviscosity of magnetic colloids, Journal of chemical phys, vol. 51, pp. 133-136, 1969.
    15. R. Patel, R.V. Upadhyay, and R.V. Mehta, Viscosity measurement of a ferrofluid:comparison with various hydrodynamic equations , Journal of colloid and interface science, vol. 263, pp. 661-664, 2003.
    16. Stefan, Odenbach, Magnetoviscous effects in ferrofluids, 1997
    17. T. Ochara, and D. Suzuki, Intermolecular energy at a solid-liquid interface, Microscale thermophysical engineering, vol. 4, pp. 189-196, 2000.
    18. H. C. Brinkman, The viscosity of concentrated suspensions and solutions, Journal chemistry physics, vol. 20, pp. 571-581, 1952
    19. M. I. Shliomis, Effective viscosity of magnetic suspensions, Soviet physics, vol. 34, pp. 1291-1294, 1972.
    20. W. A. Wakeham, A. Nagashime, and J. V. Sengers, Measurement of transport properties of fluids, (Blackwell Scientific, Oxford), pp. 459-460, 1991.
    21. Y. Nagasaka and A. Nagashima, Absoluate measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method, Journal of phys, vol. 14, pp. 1435-1439, 1981.
    22. J. P. Bentley, Temperature sensor characteristics and measurement system design, Journal of phys, vol. 17, pp. 430-439, 1984
    23. K. D. Hagen, Heat transfer with applications, pp. 638
    24. M. Windoholz, The Merck Index, ed, pp. 3742, 1983.
    25. 徐光宏, 磁性流變流體之至程研究, 國立成功大學機械工程學系碩士論文, 2001.
    26. 黃德歡, 改變世界的奈米技術, pp. 84-87, 2002.
    27. 陳信宏, 奈米銀微粒之化學合成與應用研究, 國立清華大學化學工程學系碩士論文, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE