簡易檢索 / 詳目顯示

研究生: 謝雲從
Hsieh, Yun-Tsung
論文名稱: 快速合成不同形態奈米氧化鎢結構與其光學特性之研究
Controllable Morphologies and Optical Properties with Rapid and Efficient Synthesis of Tungsten Oxide Nanobundles
指導教授: 施漢章
Shih, Han C.
口試委員: 杜正恭
丁志明
呂福興
林景崎
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 162
中文關鍵詞: 奈米氧化鎢微波電漿輔助化學氣相沈積熱化學氣相沈積不同形態快速
外文關鍵詞: tungsten oxide nanomaterials, microwave plasma-enhanced chemical vapor deposition, CVD, controllable morphology
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,利用了微波電漿輔助化學氣相沈積系統(Microwave Plasma-Enhanced Chemical Vapor Deposition, MPECVD),以無觸媒的方式,在極短時間內,於矽基板上生長不同形態的氧化鎢 (W18O49 => WO2.72) 奈米材料,成長過程中,不同的反應時間下:1.5、 3 和 4 分鐘,分別生長了WO2.72 的奈米線、奈米棒及奈米片,晶體結構與化學組成經分析得知,這些不同形態WO2.72 奈米材料皆為單晶,且成長方向皆為[010],奈米線為15–30 奈米、奈米棒為40–60奈米、奈米片為30奈米,亦即隨著反應時間的增加,WO2.72奈米材料長與寬的尺寸也隨之增加。另外,陰極激發光(Cathodoluminescence, CL)光譜得知,WO2.72奈米線由於量子尺寸效應,造成了紅移現象,也因為大量缺陷或氧空缺的緣故,WO2.72奈米線發出紅橙光。研究結果顯示,由於具優勢的極短生長時間,讓MPECVD成為一種高效率,並可隨意地控制生長不同形態之WO2.72奈米材料的方法。
    相較於MPECVD,熱化學氣相沈積系統(Thermal Chemical Vapor Deposition, TCVD),為一種廣泛並有效控制基板溫度的生長方式,我們利用TCVD以無觸媒的方式,生長不同形態的氧化鎢(WO3) 奈米材料,[002]為主要成長方向,此外, 生成的WO3奈米材料與其光學性質,和生長過程中矽基板溫度的分佈有直接的關係,由於氧空缺的緣故,使得WO3奈米線相較於一般的WO3材料在可見光吸收光譜中有紅移現象,WO3奈米材料的能階也與晶體結構和量子尺寸效應相對應,在TCVD的成長環境下,氧氣流量和矽基板溫度決定了WO3奈米材料的良率與形態。研究結果顯示,在適當的生長環境參數下,TCVD系統為一種簡單、普遍、易控制並可大量生產不同形態WO3奈米材料的生長方式。


    Contents Abstract………………………………………………………………… I Acknowledgement............................................V Contents…………………………………………………………………VI Table Captions………………………………………………………… X Figure Captions……………………………………………………… XI Chapter 1 Introduction ………………………………………………1 1.1 An Overview of Nanotechnology…………………………………1 1.2 Physics of Nanomaterials……………………………………… 4 1.2-1 Surface Effects………………………………………………5 1.2-2 Quantum Confinement Effect……………………………… 7 1.2-3 Quantum Tunneling Effect…………………………………10 1.3 Preparation and Growth Mechanism of Nanomaterials…… 13 1.3-1 Thermal Chemical Vapor Deposition (TCVD)……………13 1.3-2 Plasma - Enhanced Chemical Vapor Deposition (PECVD)……………………………………………………… 14 1.3-3 Sol -Gel Process……………………………………………14 1.3-4 Reverse Microemulsion…………………………………… 15 1.3-5 Electroplating Process……………………………………15 1.4 The Potential Disadvantages of Nanotechnology………… 16 1.5 Thesis Organization overview…………………………………19 References………………………………………………………………21 Chapter 2 Introduction to Tungsten-based Nanomaterials……27 2.1 Structure Properties of Tungsten Oxides………………… 27 2.2 Growth Mechanism of Tungsten Oxide Nanomaterials………34 2.2-1 Vapor-Liquid-Solid (VLS) Mechanism……………………35 2.2-2 Vapor-Solid (VS) Mechanism………………………………36 2.3 Preparation of WOx Nanomaterials……………………………38 2.3-1 Chemical Vapor Deposition (CVD)……………………… 38 2.3-2 Physical Vapor Deposition (PVD)……………………… 39 2.3-3 Sol -Gel Process……………………………………………40 2.3-4 Electroplating Method……………………………………41 2.4 Application of Tungsten-based Nanomaterials…………… 42 2.4-1 Application as Gas Sensors………………………………42 2.4-2 Application as Field Emitters………………………… 45 2.5 Motivations……………………………………………………… 46 References………………………………………………………………50 Chapter 3 Experimental Procedures……………………………… 64 3.1 Synthesis of Tungsten Oxide Nanomaterials……………… 64 3.1-1 MPECVD…………………………………………………………64 3.1-2 TCVD……………………………………………………………66 3.2 Characterization and Analysis……………………………… 69 3.2-1 Field Emission Scanning Electron Microscope (FESEM) …………………………………………………………………69 3.2-2 X-ray Diffraction (XRD)………………………………… 70 3.2-3 High-resolution Transmission Electron Microscopy (HRTEM)………………………………………………………… 71 3.2-4 Raman Spectroscopy…………………………………………72 3.2-5 Cathodoluminescence (CL) Spectrometry……………… 73 3.2-6 Ultraviolet UV-Visible……………………………………74 Chapter 4 Rapid Formation and Characterizations of Tungsten Oxide Nanobundles by MPECVD……………………………………… 76 4.1 Introduction………………………………………………………76 4.2 Experimental Procedures……………………………………… 79 4.3 SEM Analysis of Synthesized WO2.72…………………………80 4.4 XRD Analysis of Synthesized WO2.72…………………………82 4.5 TEM Analysis of Synthesized WO2.72…………………………87 4.5-1 TEM Image of Synthesized WO2.72 Nanorods……………87 4.5-2 TEM Image of Synthesized WO2.72 Nanoslabs………… 91 4.6 Raman Spectroscopy Analysis of Synthesized WO2.72…… 93 4.6-1 Raman Spectra of Synthesized WO2.72 Nanorods………93 4.6-2 Raman Spectra Analysis of Synthesized WO2.72 Nanoslabs……………………………………………………… 95 4.7 Analysis of the Growth Mechanism……………………………96 4.8 Role of O2 in MPECVD Growth…………………………………104 4.9 CL Analysis of WO2.72 ……………………………………… 106 4.10 Summary………………………………………………………… 108 References…………………………………………………………… 109 Chapter 5 Growth and Optical Properties of Tungsten Oxide by Thermal CVD……………………………………………………… 115 5.1 Introduction…………………………………………………… 115 5.2 Experimental Procedures………………………………………119 5.3 SEM Analysis of Synthesized WO3……………………………120 5.4 XRD Analysis of Synthesized WO3......................121 5.5 TEM Analysis of Synthesized WO3……………………………125 5.6 Raman Spectroscopy Analysis of Synthesized WO3……… 128 5.7 Analysis of Growth Mechanism……………………………… 130 5.8 Role of O2 in TCVD Growth……………………………………133 5.9 Role of Substrate Temperature in TCVD Growth………… 135 5.10 UV-visible Spectra of Synthesized WO3………………… 138 5.11 CL Analysis of the Synthesized WO3………………………140 5.12 Summary………………………………………………………… 144 References…………………………………………………………… 146 Chapter 6 Concusions and Future Words…………………………155 6.1 Conclusions………………………………………………………155 6.2 Suggestions for Future Work…………………………………157 Publish List………………………………………………………… 159 Vita…………………………………………………………………… 162 Table Captions Table 1-1 Summary of WO3 polymorphs…………………………… 31 Table 4-1 Characteristic Raman frequencies of tungsten oxides……………………………………………………………………95 Table 4-2 Summary of reaction times v.s. morphology………100 Table 4-3 Summary of O2 flow rate v.s. morphology by MPECVD………………………………………………………………… 106 Table 5-1 Characteristic Raman frequencies of tungsten oxides………………………………………………………………… 129 Table 5-2 Summary of O2 flow rate v.s. morphology by TCVD…………………………………………………………………… 134 Table 5-3 Summary of Substrate Temperatures v.s. morphology…………………………………………………………… 138 Figure Captions Figure 1-1 The scale of nanoworld……………………………… 3 Figure 1-2 The percentage of surface atoms / total atoms… 7 Figure 1-3 Density of states for bulk, quasi-2D, quasi-1D, and zero-dimensional system…………………………………………9 Figure 1-4 (a) The passage of a particle through a barrier in the traditional world, and (b) the passage of a particle through a barrier in the quantum world……………………… 12 Figure 2-1 Orbitals of tungsten………………………………… 28 Figure 2-2 WO3 showing a yellow to bright green color…… 28 Figure 2-3 (a) Unit cell for perovskite lattice, and (b) Structure of crystalline WO3………………………………………30 Figure 2-4 W-O Phase diagrams (condensed system, 0.1 MPa)……………………………………………………………………………31 Figure 2-5 Schematic band structures of WO3. Tungsten and oxygen orbitals are indicated, using standard notation, as well as the location of the Fermi level (εF). The indicated numbers of electrons (e-) can be accommodated in the bands. Filled states are shaded…………………………… 34 Figure 2-6 Schematic illustration of vapor-liquid-solid nanowire growth mechanism including three stages……………36 Figure 2-7 The schematic illustration of vapor-solid mechanism by fabrication tungsten oxide nanomaterials by MPECVD……………………………………………………………………37 Figure 3-1 Schematic representation of the MPECVD system…65 Figure 3-2 MPECVD facility…………………………………………66 Figure 3-3 Schematic representation of the thermal CVD system……………………………………………………………………68 Figure 3-4 Thermal CVD facility………………………………… 68 Figure 3-5 FE-SEM JEOL JSM6500F………………………………… 69 Figure 3-6 Shimadzu x-ray diffractometer XRD-6000………… 70 Figure 3-7 High-Resolution Transmission Electron Microscopy (HRTEM)………………………………………………………………… 71 Figure 3-8 Raman spectrometer ((LabRAM; Dilor)………………73 Figure 3-9 JEOL-JSM-7001F………………………………………… 74 Figrue 3-10 UV-visible (Hitachi, U3010)……………………… 75 Figure 4-1 Procedure for synthesis of WO2.72 with controllable morphologies………………………………………… 79 Figure 4-2 SEM images of nanobundles grown under different reaction times. (a)–(c): Morphologies of nanobundles obtained under reaction times of 1.5, 3, and 4 min…………81 Figure 4-3 SEM images of the WO2.72 nanoslabs at different magnifications…………………………………………………………82 Figure 4-4 XRD spectrum of the nanobundles fabricated at 1.5, 3, and 4 min…………………………………………………… 84 Figure 4-5 JCPDS Card No. 36-0101……………………………… 85 Figure 4-6 XRD spectra of sample from: (a) the top and (b) the bottom nanoslabs…………………………………………………87 Figure 4-7 (a) Transmission electron microscopy (TEM), (b) high-resolution TEM (HRTEM) images of the nanowires. Inset shows the corresponding selected-area diffraction (SAD) pattern, (c) typical energy-dispersive x-ray spectroscopy (EDS) of the nanowires showing the presence of only W and O with an atomic ratio W:O =1:2.72. Peaks due to C and Cu are a result of TEM copper grids, and (d) corresponding EDS elemental line profile………………………………………………89 Figure 4-8 (a) and (b): Typical EDS of the nanobundles fabricated under reaction times of 3 min and 4 min, respectively. The nanobundles comprise only W and O Peaks due to C and Cu originate from the TEM copper grids……… 90 Figure 4-9 (a) TEM image and (b) HRTEM image of the nanowslab. Inset shows the SAD pattern of the nanoslab……92 Figure 4-10 EDS spectra of the sample from: (a) the top nanoslabs, and (b) the bottom nanoslabs……………………… 93 Figure 4-11 Raman spectra of the as-prepared WO2.72 nanowires……………………………………………………………… 94 Figure 4-12 Raman spectra of the as-prepared nanoslabs from: (a) the top nanoslabs, and (b) the bottom nanoslabs 96 Figure 4-13 SEM image of the nanobundles grown under different reaction times: (a) 2 min, and (b) 3.5 min…… 100 Figure 4-14 (a) Cross-sectional SEM image of WO2.72 nanowires grown on the base layer. The inset shows a magnified image depicting the bottom of nanowire growth, and (b) WO2.72 nanowires in regions where only a base layer exists………………………………………………………………… 102 Figure 4-15 Schematic illustration of the growth mechanism of the metal oxide nanostructures from bulk material upon exposure to highly dissociated oxygen plasma. Four main stages of nanostructure growth are shown: (a) nucleation, (b) nanowire growth, (c) nanorod growth, and (d) nanoslab growth………………………………………………………………… 103 Figure 4-16 SEM image of the WO2.72 nanowires grown at different O2 flow rates: (a) 0 sccm (b) 25 sccm (c) 100 sccm, and (d) 175 sccm…………………………………………… 105 Figure 4-17 Cathodoluminescence (CL) spectra of the as-prepared WO2.72 nanowires…………………………………………107 Figure 5-1 Procedure for synthesis of WO3 with controllable morphologies………………………………………………………… 119 Figure 5-2 SEM images of tungsten oxide nanobundles formed at different substrate temperatures: (a) 250–350°C, (b) 450–550°C, and (c) 550–650°C………………………………… 121 Figure 5-3 XRD spectra of the nanobundles fabricated at substrate temperatures of 250–350°C, 450–550°C, and 650–750°C……………………………………………………………………123 Figure 5-4 JCPDS Card No. 43-1035………………………………124 Figure 5-5 (a) TEM and (b) high-resolution TEM (HRTEM) images of a nanowire. Inset shows the corresponding selected-area diffraction (SAD) pattern, and (c) TEM and (d) HRTEM images of a nanorod……………………………………126 Figure 5-6 (a) Energy-dispersive x-ray spectroscopy (EDS) elemental line profile of nanowire shown in Figure 5-5a (b) and (c) EDS spectra for nanobundles fabricated at substrate temperatures of 250–350°C and 450–550°C, respectively. Nanobundles contain only W and O atoms. Peaks due to C and Cu signals can be attributed to copper TEM grids……………………………………………………………………127 Figure 5-7 Raman spectrum of the as-prepared WO3 nanowires………………………………………………………………129 Figure 5-8 SEM image of the WO3 nanowires grown at various O2 flow rates: (a) 0 sccm (b) 0.5 sccm, and (c) 2 sccm…134 Figure 5-9 SEM images of WO3 nanorods grown with different silicon substrates at different temperatures: (a) 400–500°C (b) 600-700°C, and (c) left region is silicon substrate for temperatures of 500–600°C, and right region is silicon substrate for temperatures of 600–700°C………137 Figure 5-10 UV-visible spectrum of the as-prepared WO3 nanowires; the inset shows the corresponding (αE)2-E curve……………………………………………………………………140 Figure 5-11 Cathodoluminescence (CL) spectrum of the as-prepared WO3 nanowires…………………………………………… 142 Figure 5-12 CL spectra of the as-prepared WO3 nanorods… 144

    [1] R.W. Siegel, E. Hu, and M.C. Roco, “Nanostructure Science and Technology A Worldwide Study,” Loyola College in Maryland, WTEC Hyper-Librarian, Chapter 2, 1999.
    [2] R. Feynman, “There’s plenty of room at the bottom”, Engineering and Science, 23, 1960.
    [3] G. Binnig, and C. F. Quant, “Atomic force microscope”, Phys. Rev. Lett., 56, 930 (1986).
    [4] C. J. Chen, “Introduction to Scanning Tunneling Microscopy”, Oxford University Press, Oxford, (1993).
    [5] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy”, Phys. Rev. Lett., 49, 57 (1982).
    [6] Created by the Office of Basic Energy Sciences in the U. S. Department of Energy.
    [7] R. Nemutudi, M. Kataoka, C. J. B. Ford, N. J. Appleyard, M. Pepper, D. A. Ritchie, and G. A. C. Jones, “Noninvasive lateral detection of coulomb blockade in a quantum dot fabricated using atomic force microscopy”, Appl. Phys. Lett., 95, 2557 (2004).
    [8] R. Tenne, “Fullerene-like structures and nanotubes from inorganic compounds”, Endeavour, 20, 97 (1996).
    [9] T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, “Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition”,Chem. Phys. Lett., 381, 422 (2003).
    [10] N. J. Petch, “The cleavage of polycrystals”, J. Iron. Steel. Res. Int., 174, 25 (1953).
    [11] T. G. Nieh, and J. Wadsworth, “Hall-petch relation in nanocrystalline solids”, Scripta. Mater., 25, 955 (1991).
    [12] V. R. Oleshko, J. M. Howe, S. Shukla, and S. Seal, “High–resolution and analytical tem investigation of metastable–tetragonal phase stabilization in undoped nanocrystalline zirconia”, J. Nanosci. Nanotechno., 4, 867 (2004).
    [13] J. V. Barth, G. Costantini, and K. Kern, “Engineering atomic and molecular nanostructures at surfaces”, Nature, 437, 671 (2005).
    [14] Y. Yin, and A. P. Alivisatos, “Colloidal nanocrystal synthesis and the organic- inorganic interface”, Nature, 437, 664 (2005).
    [15] D. Loss, Quantum phenomena in nanotechnology”, Nanotechnology, 20, 430205 (2009).
    [16] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee. J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display”, Appl. Phys. Lett., 75, 3129 (1999).
    [17] W. A. de Heer, A. Chatelaine, and D. Ugarte, “A carbon nanotube field-emission electron source”, Science, 270, 1179 (1995).
    [18] K. A. Dean, and B. R. Chalamala, “The environmental stability of field emission from single-walled carbon nanotubes”, Appl. Phys. Lett., 75, 3017 (1999).
    [19] Alain Nouailhat “An Introduction to Nanoscience and Nanotechnology”, (2008).
    [20] Y. T. Hsieh, M. W. Huang, C. C. Chang, U. S. Chen, and H. C. Shih, “Growth and optical properties of uniform tungsten oxide nanowire bundles via a two-step heating process by thermal evaporation”, Thin Solid Films, 519, 1668 (2010).
    [21] K. H. Lee, S. W. Lee, R. R. Vanfleet, and W. Sigmund, “Amorphous silica nanowires grown by the vapor–solid mechanism”, Chem. Phys. Lett., 376, 498 (2003).
    [22] Y. T. Hsieh, L. W. Chang, C. C. Chang, and H. C. Shih, “Synthesis of WO3 nanorods by thermal CVD at various gas flow rates and substrate temperatures”, Electrochem. Solid St., 14, K40 (2011).
    [23] X. Xiang, C. B. Cao, Y. J. Guo, and H. S. Zhu, “A simple method to synthesize gallium oxide nanosheets and nanobelts”, Chem. Phys. Lett., 378, 660 (2003).
    [24] Y. G. Zhang, N. L. Wang, R. R. He, J. Liu, X. Z. Zhang, and J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture”, J. Cryst. Growth, 233, 803 (2001).
    [25] S. H. Tasi, C. W. Chao, C. L. Lee, X. W. Liu, I. N. Lin, and H. C. Shih, “Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis”, Eletrochem. Solid-State Lett., 2, 247 (1999).
    [26] J. M. Ting, and R. M. Liu, “Carbon nanowires with new microstructures”,
    Carbon, 41, 579 (2003).
    [27] L. H. Chan, K. H. Homg, S. H. Lai, X. W. Liu, and H. C. Shih, “The formation and characterization of palladium nanowires in growing carbon nanotubes using microwave plasma-enhanced chemical vapor deposition”, Thin Solid Films, 423, 27 (2003).
    [28] X. B. Zeng, Y. Y. Xu, S. B. Zhang, Z. H. Hu, H. W. Diao, Y. Q. Wang, G. L. Kong, and X. B. Liao, “Silicon nanowires grown on a pre-annealed Si substrate”, J. Cryst. Growth, 247, 13 (2003).
    [29] M. J. Alam, and D. C. Cameron, “Investigation of annealing effects on sol-gel deposited transparent conductive ZnO:Al thin films in different atmospheres”, J. Sol-Gel Sci. Techn., 25, 137 (2002).
    [30] H. G. Choi, Y. H. Jung, and D K. Kim, “Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet”, J. Am. Ceram., Soc., 88, 1684 (2005).
    [31] S. Sun, Y. Zhao, Y. Xia, Z. Zou, G. Min, and Y. Zhu, “Bundled tungsten oxide nanowires under thermal processing”, Nanotechnology, 19, 305709 (2008).
    [32] O. G. Cervantes , J. D. Kuntz, A. E. Gash, and Z. A. Munir, “Activation energy of tantalum–tungsten oxide thermite reactions”, Combust. Flame, 157, 1566 (2010).
    [33] D. F. Zhang, L. D. Sun, J. L. Yin, and C. H. Yan, “Low-temperature fabrication of highly crystalline SnO2 nanorods”, Adv. Mater., 15, 12, (2003).
    [34] F. Chen, G. Q. Xu, and T. S. A. Hor, “Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion”, Mater. Lett., 57, 3282 (2003).
    [35] J. Jang, and H. Yoon, “Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization”, Chem. Commun., 6, 720 (2003).
    [36] S. S. Hong, M. S. Lee, and G. D. Lee, “Photocatalytic decomposition of p-nitrophenol over titanium dioxide prepared by reverse microemulsion method using nonionic surfactants with different hydrophilic groups”, React. Kinet. Catal. L., 80, 145 (2003).
    [37] D. Xu, X. Shi, G. Guo, L. Gui and Y. Tang, “Electrochemical preparation of CdSe nanowire arrays”, J. Phys. Chem. B, 104, 5061 (2000).
    [38] Q. Zhang, A. K. Chakraborty, and W. I. Lee, “WO2.72 and WO3 nanorod arrays prepared by AAO-templated electrodeposition method”, Bull. Korean Chem. Soc., 30, 227 (2009).
    [39] Y. Kashimura, H. Nakashima, K. Furukawa, and K. Torimitsu, “Fabrication of nano-gap electrodes using electroplating technique”, Thin Solid Films, 438, 317 (2003).
    [40] M.R. Vaezi, S.K. Sadrnezhaad, and L. Nikzad, “Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics”, Colloid. Surface. A, 315, 176 (2008).
    [41] P. A. Cox, “Transition Metal Oxides”, Oxford, 1995.
    [42] E. Salje, “The orthorhombic phase of WO3”, Acta. Crystallogr. B, 33, 574 (1977).
    [43] B. D. Cullity, “Elements of X-Ray Diffraction”, Addison-Wesey, 1990.
    [44] A. S. Wells, “Structural Inorganic Chemistry” Oxford, 1987.
    [45] S. Wang, J. Zhao, T. Zhou, L. Wang, and A. Kuang, “Thermal decomposition of ktn gel and formation of perovskite structure KTN”, Ferroelectrics., 195, 5 (1997).
    [46] A. G. S. Filho, V. N. Freire, J. M. Sasaki, J. M. Filho, J. F. Juliao, and U. U. Gomes, “Coexistence of triclinic and monoclinic phases in WO3 ceramics”, J. Raman Spectrosc., 31, 451 (2000).
    [47] M. Boulova, and G. Lucazeau, “Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy”, J. Solid State Chem., 167, 425 (2002).
    [48] P. J. Desre, “A thermodynamic model for the nanocrystal to glass transition of intermetallic compounds subjected to high deformation by mechanical attrition—Application to L12 phases” Nanostruct. Mater., 8, 678 (1997).
    [49] G. A. Niklasson, and C. G. Granqvist, “Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these”, J. Mater. Chem., 17, 127 (2007).
    [50] S. M. Cui, G. H. Lu, S. Mao, K. H. Yu, and J. H. Chen, “One-dimensional tungsten oxide growth through a grain-by-grain buildup process”, Chem. Phys. Lett., 485, 64 (2010).
    [51] H. Qi, C. Wang, and J. Liu, “A simple method for the synthesis of highly oriented potassium-doped tungsten oxide nanowires”, Adv. Mater., 15, 411 (2003).
    [52] X. L. Li, J. F. Liu, and Y. D. Li, “Large-scale synthesis of tungsten oxide nanowires with high aspect ratio”, Inorg. Chem., 42, 921 (2003).
    [53] Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth”, J. Am. Chem. Soc., 123, 3165 (2001).
    [54] L. F. Chi, S. Z. Deng, N. S. Xu, J. Chen, J. C. She, and X. H. Liang, “The study of optimizing growth conditions for improving field emission property of WO2.72 nanorod arrays”, Nanotechnology, 17, 5590, (2006).
    [55] G. Gu, B. Zheng, W. Q. Han, S. Roth, and J. Liu, “Tungsten oxide nanowires on tungsten substrates”, Nano. Lett., 8, 849 (2002).
    [56] S. Wang, Y. He, J. Zou, Y. Jiang, J. Xu, B. Huang, C. T. Liu, and P. K. Liaw, “Synthesis of single-crystalline tungsten nanowires by nickel-catalyzed vapor-phase method at 850 °C”, J. Cryst. Growth, 306, 433 (2007).
    [57] M. Gillet, R. Delamare, and E. Gillet, “Growth of epitaxial tungsten oxide nanorods”, J. Cryst. Growth, 279, 93 (2005).
    [58] Z. Liu, Y. Bando, and C. Tang, “Synthesis of tungsten oxide nanowires”, Chem. Phys. Lett., 372, 179 (2003).
    [59] Y. T. Hsieh, S. H. Hsueh, U. S. Chen, M. W. Huang, and H. C. Shih, “Synthesis of tungsten oxide nanoslab bundles by microwave plasma-enhanced chemical vapor deposition”, Jpn. J. Appl. Phys., 50, 01AB05 (2011).
    [60] C. S. Blackman, and I. P. Parkin, “Atmospheric pressure chemical vapor deposition of crystalline monoclinic WO3 and WO3-x thin films from reaction of WCl6 with O-containing solvents and their photochromic and electrochromic properties”, Chem. Mater., 17, 1583 (2005).
    [61] F. Chavez, C. Felipe, E. Lima, V. Lara, C. A. Chavez, and M. A. Hernandez, “Preparation of self-organized porous tungsten oxide using HFCVD technique”, Mater. Chem. Phys., 120, 36 (2010).
    [62] C. M. White, J. S. Jang, S. H. Lee, J. Pankow, and A. C. Dillon, “Photocatalytic activity and photoelectrochemical property of nano-WO3 powders made by hot-wire chemical vapor deposition”, Electrochem. Solid. St., 13, B120 (2010).
    [63] Y. Zhang, Y. Chen, H. Liu, Y. Zhou, R. Li, M. Cai, and X. Sun, “Three-dimensional hierarchical structure of single crystalline tungsten oxide nanowires: construction, phase transition, and voltammetric behavior”, J. Phys. Chem., 113, 1746 (2009).
    [64] Y. H. Lee, C. H. Choi, Y. T. Jang, E. K. Kim, and B. K. Ju, “Tungsten nanowires and their field electron emission properties”, Appl. Phys. Lett., 81, 745 (2002).
    [65] M. D. Giulio, D. Manno, G. Micocci, A. Serra, and A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide”, J. Phys. D: Appl. Phys. 30, 3211 (1997).
    [66] A. Monteiro, M. F. Costa, B. Almeida, V. Teixeira, J. Gago, and E. Roman, “Structural and optical characterization of WO3 deposited on glass and ITO”, Vaccum, 64, 287 (2002).
    [67] A. Karuppasamy, and A. Subrahmanyam, “Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering”, J. Appl. Phys., 101, 113522 (2007).
    [68] Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, “WO3 nanorods/nanobelts synthesized via physical vapor deposition process”, Chem. Phys. Lett., 367, 214 (2003).
    [69] X. Chang, S. Sun, and Y. Yin, “Green synthesis of tungsten trioxide monohydrate nanosheets as gas sensor”, Mater. Chem. Phys., 126, 717 (2010).
    [70] A. Yan, C. Xie, D. Zeng, S. Cai, and H. Li, “Synthesis, formation mechanism and illuminated sensing properties of 3D WO3 nanowall”, J. Alloy. Compd., 495, 88 (2010).
    [71] Y. Qin, M. Hu, and J. Zhang, “Microstructure characterization and NO2-sensing properties of tungsten oxide nanostructures”, Sensor. Actuat. B-Chem., 150, 339 (2010).
    [72] S. Sun, Z. Zou, and G. Min, “Synthesis of tungsten disulfide nanotubes from different precursor”, Mater. Chem. Phys., 114, 884 (2009).
    [73] T. D. Senguttuvan, V. Srivastava, J. S. Tawal, M. Mishra, S. Srivastava, and K. Jain, “Gas sensing properties of nanocrystalline tungsten oxide synthesized by acid precipitation method”, Sensor. Actuat. B-Chem., 150, 384 (2010).
    [74] Y. M. Zhao, and Y. Q. Zhu, “Room temperature ammonia sensing properties of WO2.72 nanowires”, Sensor. Actuat. B-Chem., 137, 27 (2009)
    [75] C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, “Crystallographically oriented mesoporous WO3 Films: synthesis, characterization, and applications”, J. Am. Chem. Soc., 123, 10639 (2001).
    [76] J. D. Kuntz, O. G. Cervantes, A. E. Gash, and Z. A. Munir, “Activation energy of tantalum–tungsten oxide thermite reactions”, Combust. Flame., 157, 1566 (2010).
    [77] H. Wang, X. Quan, Y. Zhang, and S. Chen, “Direct growth and photoelectrochemical properties of tungsten oxide nanobelt arrays”, Nanotechnology, 19, 065704 (2008).
    [78] Y. Q. Zhu, W. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, and H. Terrones, “Tungsten oxide tree-like structures”, Chem. Phys. Lett., 309, 327 (1999).
    [79] A. W. Hassel, S. Milenkovic, and A. J. Smith, “Large scale synthesis of single crystalline tungsten nanowires with extreme aspect ratios”, Phys. Status. Solidi. A, 207, 858 (2010).
    [80] M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, and W. Ueda, “Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation”, J. Mater. Chem., 20, 1811 (2010).
    [81] Q. Zhang, A. K. Chakraborty, and W. I. Lee, “WO2.72 and WO3 nanorod arrays prepared by AAO-templated electrodeposition method”, Bul. Korean Chem Soc., 30, 227 (2009).
    [82] L. Zhu, J. Xu, Y. Xiu, Y. Sun, D. W. Hess, and C. P. Wong, “Electrowetting of aligned carbon nanotube films”, J. Phys. Chem. B, 110, 15945 (2010).
    [83] S. Armini, I. U. Vakarelski, C. M. Whelan, K. Maex, and K. Higashitani, “Nanoscale indentation of polymer and composite polymer−silica core−shell submicrometer particles by atomic force microscopy”, Langmuir, 23, 2007 (2007).
    [84] C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen, and R. H. Horng, “Three-step growth of well-aligned ZnO nanotube arrays by self-catalyzed metalorganic chemical vapor deposition method”, Cryst. Growth Des., 9, 4555 (2009).
    [85] Y. Talyosef, B. Markovsky, R. Lavi, G. Salitra, D. Aurbach, D. Kovacheva, M. Gorova, E. Zhecheva, and R. Stoyanova, “Comparing the behavior of nano-and microsized particles of LiMnNiO spinel as cathode materials for Li-Ion batteries”, J. Electrochem. Soc., 154, A682 (2007).
    [86] F. Cui, C. Feng, R. Xie, Z. Hua, H. Ohtsuka, Y. Sakka, and J. Shi, “Magnetic field-induced off-resonance third-order optical nonlinearity of iron oxide nanoparticles incorporated mesoporous silica thin films during heat treatment”, Opt. Express, 18, 2010 (2010).
    [87] L. Vayssieres, L. Rabenberg, and A. Manthiram, “Aqueous chemical route to ferromagnetic 3-D arrays of iron nanorods”, Nano Lett., 2, 1393 (2002).
    [88] N. T. Flynn, and A. A. Gewirth, “Synthesis and characterization of molybdate-modified platinum nanoparticles”, Phys. Chem. Chem. Phys., 6, 1310 (2004).
    [89] Y. M. Zhao, and Y. Q. Zhu, “Room temperature ammonia sensing properties of WO2.72 nanowires”, Sens. Actuators B, 137, 27 (2009).
    [90] T. He, Y. Ma, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang, and J. Yao, “Photochromism of WO3 Colloids Combined with TiO2 Nanoparticles”, J. Phys. Chem. B, 106, 12670(2002).
    [91] J. Y. Luo, F. L. Zhao, L. Gong, H. J. Chen, J. Zhou, Z. L. Li, S. Z. Deng, and N. S. Xu, “Ultraviolet-visible emission from three-dimensional WO3-x nanowire networks”, Appl. Phys. Lett., 91, 093124 (2007).
    [92] K. Huang, Q. Pan, F. Yang, S. Ni, and D. He, “The catalyst-free synthesis of large-area tungsten oxide nanowire arrays on ITO substrate and field emission properties”, Mater. Res. Bull., 43, 919 (2008).
    [93] M. Akiyama, J.Tamaki, M. Miura, and N. Yamazoe, “Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2”, Chem. Lett., 1, 1611 (1991).
    [94] J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, and N. Yamazoe, “Grain-size effects in tungsten oxide-based sensor for nitrogen oxides”, J. Electrochem. Soc., 141, 2207 (1994).
    [95] C. W. Chu, M. J. Deen, and R. H. Hill, “Sensors for detecting dub‐ppm no using photochemically produced amorphous tungsten oxide”, J. Electrochem. Soc., 145, 4219 (1998).
    [96] H. M. Lin, C. M. Hsu, H. Y. Yang, P. Y. Lee, and C. C. Yang, “Nanocrystalline WO3-based H2S sensors”, Sens. Actuators B, 22, 63 (1994).
    [97] K.H. Lee, Y.K. Fang, W.J. Lee, J.J. Ho, K.H. Chen, and K.S. Liao, “Novel electrochromic devices (ECD) of tungsten oxide (WO3) thin film integrated with amorphous silicon germanium photodetector for hydrogen sensor”, Sens. Actuators, B, 69 (2000) 96.
    [98] X. Li, G. Zhang, F. Cheng, B. Guo, and J. Chen, “Synthesis, characterization, and gas-sensor application of WO3 nanocuboids”, J. Electrochem. Soc., 153, H133 (2006).
    [99] A. Ponzoni, E. Comini, and G. Sberveglieri, “Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks”, Appl. Phys. Lett., 88, 203101 (2006).
    [100] E. K. Heidari, C. Zamani, E. Marzbanrad, B. Raissi, and S. Nazarpour, “WO3-based NO2 sensors fabricated through low frequency AC electrophoretic deposition”, Sensor. Actuat. B-Chem., 146, 165 (2010).
    [101] Y. Li, X. Su, J. Jian, and J. Wang, “Ethanol sensing properties of tungsten oxide nanorods prepared by microwave hydrothermal method”, Ceram. Int., 36, 1917 (2010).
    [102] Y. S. Kim, S. C. Ha, K. Kim, H. Yang, S. Y. Choi, and Y. T. Kim, “Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film”, Appl. Phys. Lett., 86, 213105 (2005).
    [103] C. Aiyer, S. K. Gupta, and J. V. Yakhmi, “Growth of SnO2/WO2.72 nanowire hierarchical heterostructure and their application as chemical sensor”, Sensor. Actuat. B-Chem., 147, 453 (2010).
    [104] C. S. Rout, M. Hegde, and C. N. R. Rao, “H2S sensors based on tungsten oxide nanostructures”, Sensor. Actuat. B-Chem., 128, 488 (2008).
    [105] C. S. Rout, A. Govindaraj, and C. N. R. Rao., “High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires”, J. Mater. Chem., 16, 3936 (2006).
    [106] B. Cao, J. Chen, X. Tang, and W. Zhou, “Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection”, J. Mater. Chem., 19, 2323 (2009).
    [107] Y. S. Kim, Sensor. “Thermal treatment effects on the material and gas-sensing properties of room-temperature tungsten oxide nanorod sensors”, Actuat. B-Chem., 137, 297 (2009).
    [108] S. Sen, P. Kanitkar, A. Sharma, K. P. Muthe, A. Rath, S. K. Deshpande, M. Kaur, R., “Growth of SnO2/WO2.72 nanowire hierarchical heterostructure and their application as chemical sensor”, Sensor. Actuat. B-Chem., 147, 453 (2010).
    [109] K. Huang, Q. Pan, F. Yang, S. Ni, and D. He, “Synthesis and field-emission properties of the tungsten oxide nanowire arrays”, Physica. E, 39, 219 (2007).
    [100] Y. M. Zhao, Y. H. Li, I. Ahmad, D. G. Mccartney, and Y. Q. Zhu, “Two-dimensional tungsten oxide nanowire networks”, Appl. Phys. Lett., 89, 133116 (2006).
    [101] K. Huang, Q. Pan, F. Yang, S. Ni, and D. He, “The catalyst-free synthesis of large-area tungsten oxide nanowire arrays on ITO substrate and field emission properties”, Mater. Res. Bull., 43, 919 (2008).
    [102] S. Jeon, H. Kim, and K. Yong, “Deposition of tungsten oxynitride nanowires through simple evaporation and subsequent annealing”, J. Vac. Sci. Technol. B, 27, 671 (2009).
    [103] Y. H. Lee, C. H. Choi, Y. T. Jang, E. K. Kim, and B. K. Ju, “Tungsten nanowires and their field electron emission properties”, Appl. Phys. Lett., 81, 745 (2002).
    [104] M. Furubayashi, K. Nagato, H. Moritani, T. Hamaguchi, and M. Nakao, “Field emission properties of discretely synthesized tungsten oxide nanowires”, Microelectron. Eng., 87, 1594 (2010).
    [105] J. Rosenqvist, K. Axe, S. Sjoberg, and P. Persson, “Adsorption of dicarboxylates on nano-sized gibbsite particles: effects of ligand structure on bonding mechanisms”, Colloid. Surface. A, 220, 91 (2003).
    [106] L. Cha, C. Scheu, H. Clemens, H. F. Chladil, G. Dehm, R. Gerling, and A. Bartels, “Nanometer-scaled lamellar microstructures in Ti–45Al–7.5Nb–(0; 0.5)C alloys and their influence on hardness”, Intermetallics, 16, 868 (2008).
    [107] B. Chaudhry, H. Ashton, M. Yost, S. Bull, and D. Frankel, “Nanoscale viscoelastic properties of an aligned collagen scaffold”, J. Mater. Sci-Mater. M., 20, 257 (2009).
    [108] M. A. Baker, S. Klose, C. Rebholz, A. Leyland, and A. Matthews, “Evaluating the microstructure and performance of nanocomposite PVD TiAlBN coatings”, Surf. Coat. Tech., 151, 338 (2002).
    [109] J. Thangala, S. Vaddiraju, S. Malhotra, V. Chakrapani, and M. K. Sunkara, “A hot-wire chemical vapor deposition (CVD) setup for the synthesis of metal oxide and their alloy nanowire arrays”, Thin Solid Films, 517, 3600 (2009).
    [110] C. D. Guerra, M. F. Chioncel, and J. Piqueras, “Structural and cathodoluminescence assessment of transition metal oxide nanostructures grown by thermal deposition methods”, Superlattices Microstruct, 45, 145 (2009).
    [111] J. H. Ha, P. Muralidharan, and D. K. Kim, “Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts”, J. Alloys Compd., 475, 446 (2009).
    [112] W. Hu, Y. Zhao, Z. Liu, C. W. Dunnill, D. H. Gregory, and Y. Zhu, “Nanostructural evolution: from one-dimensional tungsten oxide nanowires to three-dimensional ferberite flowers”, Chem. Mater., 20, 5657 (2008).
    [113] R. Koc and S. K. Kodambaka, “ChemInform abstract: tungsten carbide (WC) synthesis from novel precursors”, J. Eur. Ceram. Soc., 20, 1859 (2000).
    [114] T. Zehnder and J. Patscheider, “Nanocomposite TiC/a–C:H hard coatings deposited by reactive PVD”, Surf. Coat. Tech., 133, 138 (2000).
    [115] R. Gupta, A. Khandelwal, A. Gupta and P. Schaaf, “Characterization of iron oxide films prepared by laser irradiation in oxygen atmosphere”, J. Phys. D Appl. Phys., 42, 185305 (2009).
    [116] H. Tomaszewski, H. Poelman, D. Depla, D. Poelman, R. D. Gryse, L. Fiermans, M. F. Reyniers, G. Heynderickx and G. Marin, “TiO2 films prepared by DC magnetron sputtering from ceramic targets”, Vacuum, 68, 31 (2002).
    [117] Z. B. Zeng, Y. Y. Xu, S. B. Zhang, Z. H. Hu, H. W. Diao, Y. Q. Wang, G. L. Kong, and X. B. Liao, “Silicon nanowires grown on a pre-annealed Si substrate”, J. Cryst. Growth, 247, 13 (2003).
    [118] B. Yihong, P. Qiao, T. Chong, and Z. Shen, “Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition”, Adv. Mater., 14, 64 (2002).
    [119] W. H. Wang, Y. R. Peng, P. K. Chuang, and C. T. Kuo, “Low-temperature growth mechanism of SWNTs networks by buffer layer-assisted MPCVD”, Diam. Relat. Mater., 15, 1047 (2006).
    [120] W. M. Arnoldbik, D. Knoesen, N. Tomozeiu, and F.H.P.M. Habraken, “Nano-scale effects of swift heavy ion irradiation in SiOx layers and multilayers”, Nucl. Instrum. Meth. B, 258 199 (2007).
    [121] A. H. Gomez, J. T. Grant, P. J. Cumpson, M. Jenko, F. S. A. Tostado, C. R. Brundle, T. Conard, G. Conti, C. S. Fadley, J. Fulghum, K. Kobayashi, L. Kover, H. Nohira, R. L. Opila, S. Oswald, R. W. Raynter, R. M. Wallace, W. S. M. Werner, and J. Wolstenholme, “Report on the 47th IUVSTA Workshop ‘Angle-Resolved XPS: the current status and future prospects for angle-resolved XPS of nano and subnano films”,Surf. Interface Anal., 41, 840 (2009).
    [122] F. Simon, A. Kukovecz, Z. Konya, R. Pfeiffer, and H. Kuzmany, “Highly perfect inner tubes in CVD grown double-wall carbon nanotubes”, Chem. Phys. Lett., 413, 506 (2005).
    [123] A. C. Sosa, P. Schaaf, J. A. R. Esqueda, J. A. S. Harutinian, and A. Oliver, “Excimer laser absorption by metallic nano-particles embedded in silica”, J. Phys. D Appl. Phys., 40, 1890 (2007).
    [124] I. Tunc, S. Suzer, M. A. C. Duarte, and L. M. L. Marzan, “XPS characterization of Au (Core)/SiO2 (Shell) nanoparticles”,J. Phys. Chem. B, 109, 7597 (2005).
    [125] H. Kobayashi, and M. W. Brechbiel, “Nano-sized MRI contrast agents with dendrimer cores”, Adv. Drug. Deliver., 57, 2271 (2005).
    [126] T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H. Hsieh, and I. C. Chen, “Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates”, Scripta. Mater., 57, 53 (2007).
    [127] Z. G. Zhao, and M. Miyauchi, “A novel visible-light-driven photochromic material with high-reversibility: tungsten oxide-based organic–inorganic hybrid microflowers”, Chem. Commun., 10, 2204 (2009).
    [128] S. Gubbala, J. Thangala, and M. K. Sunkara, “Nanowire-based electrochromic devices”, Sol. Energ. Mat. Sol. C, 91, 813 (2007).
    [129] J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R. Yang, and Z. L. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays”, Appl. Phys. Lett., 87, 223108 (2005).
    [130] Y. M. Zhao, and Y. Q. Zhu, “Room temperature ammonia sensing properties of WO2.72 nanowires”, Sensors Actuat. B-Chem., 137, 27 (2009).
    [131] N. Shankar, M. F. Yu, S. P. Vanka, and N. G. Glumac, “Synthesis of tungsten oxide (WO3) nanorods using carbon nanotubes as templates by hot filament chemical vapor deposition”,Mater. Lett., 60, 771 (2006).
    [132] J. H. Ha, P. Muralidharan, and D. K. Kim, “Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts”, J. Alloy. Compd., 475, 446 (2007).
    [133] S. J. Wang, W. J. Lu, G. Cheng, X. H. Jiang, and Z. L. Du, “ Electronic transport property of single-crystalline hexagonal tungsten trioxide nanowires”, Appl. Phys. Lett., 94, 263106 (2009).
    [134] S. Sun, Z. Zou, and G. Min, “Synthesis of bundled tungsten oxide nanowires with controllable morphology”, Mater. Charact., 60, 437 (2009).
    [135] G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele, “Highly ordered monocrystalline silver nanowire arrays”,J. Appl. Phys., 91, 3243 (2002).
    [136] V. Y. Prinz, D. Grutzmacher, A. Beyer, C. David, B. Ketterer, and E. Deckardt, “A new technique for fabricating three-dimensional micro- and nanostructures of various shapes”, Nanotechnology, 12, 399 (2001).
    [137] L. Chi, N. Xu, S. Deng, J. Chen, and J. She, “An approach for synthesizing various types of tungsten oxide nanostructure”, Nanotechnology, 17, 5590 (2006).
    [138] Y. Z. Jin, Y. Q. Zhu, R. L. D. Whitby, N. Yao, R. Ma, P. C. P. Watts, H. W. Kroto, and D. R. M. Walton, “Simple approaches to quality large-scale tungsten oxide nanoneedles”, J. Phys. Chem. B, 108, 15572 (2004).
    [139] Y. Wu, Z. Xi, G. Zhang, J. Yu, and D. Guo, “Growth of hexagonal tungsten trioxide tubes”, J. Cryst. Growth, 292, 143 (2006).
    [140] S. Wang, Y. He, B. Huang, J. Zou, C. T. Liu, and P. K. Liaw, “Formation and growth mechanism of tungsten oxide microtubules”, Chem. Phys. Lett., 427, 350 (2006).
    [141] X. Zhao, T. L. Y. Cheung, X. Zhang, D. H. L. Ng, and J. Yu, “Facile preparation of strontium tungstate and tungsten trioxide hollow spheres”, J. Am. Ceram. Soc., 89, 2960 (2006).
    [142] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, “Diamond synthesis from gas phase in microwave plasma”, J. Cryst. Growth, 62, 642 (1983).
    [143] X. L. Li, J. F. Liu, and Y. D. Li Y D, “Large-scale synthesis of tungsten oxide nanowires with high aspect ratio”, Inorg. Chem., 42, 921 (2003).
    [144] K. Hong, Q. Pan, F. Yang, S. Ni and D. He, “The catalyst-free synthesis of large-area tungsten oxide nanowire arrays on ITO substrate and field emission properties”, Mater. Res. Bull. 43, 919 (2008).
    [145] K. Hong, M. Xie and H. Wu, “Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature”, Nanotechnology, 17, 4830 (2006).
    [146] A. Baserga, V. Russo, F. D. Fonzo, A. Bailini, D. Cattaneo, C. S. Casari, A. L. Bassi and C. E. Bottani, “Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization”,Thin Solid Films, 515, 6465 (2007).
    [147] S. H. Lee. H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, and S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3”, Electrochim. Acta., 44, 3111 (1999).
    [148] K. Hong, M. Xie, and H. Wu, “Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature”,Nanotechnology, 17, 4830 (2006).
    [149] R. Hu, H. Wu, and K. Hong, “Growth of uniform tungsten oxide nanowires with small diameter via a two-step heating process”,J. Cryst. Growth, 306, 395 (2007).
    [150] C. Ye, X. Fang, Y. Hao, X. Teng, and L. Zhang, “Zinc oxide nanostructures: morphology derivation and evolution”, J. Phys. Chem. B, 109, 19758 (2005).
    [151] S. J. Kwon, “Theoretical analysis of non-catalytic growth of nanorods on a substrate”,J. Phys. Chem. B, 110, 3876 (2006).
    [152] I. Levchenko, and K. Ostrikov, “Nanostructures of various dimensionalities from plasma and neutral fluxes”, J. Phys. D: Appl. Phys., 40, 2308 (2007).
    [153] M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou and H. J. Gao, “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films”,Appl. Phys. Lett., 86, 141901 (2005).
    [154] K. Lee, W. S. Seo and J. T. Park, “Synthesis and optical properties of colloidal tungsten oxide nanorods”, J. Am. Chem. Soc., 125, 3408 (2003).
    [155] Y. H. Li, Y. M. Zhao, R. Z. Ma, Y. Q. Zhu, N. Fisher, Y. Z. Jin and X. P. Zhang, “Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes”, J. Phys. Chem. B, 110, 18191 (2006).
    [156] P. E. Hovsepian, A. P. Ehiasarian, Y. P. Purandare, R. Braun, and I. M. Ross, “Effect of high ion irradiation on the structure, properties and high temperature tribology of nanoscale CrAlYN/CrN multilayer coating deposited by HIPIMS-HIPIMS technique”, Plasma Process Polym., 6, S118 (2009).
    [157] L. Gao, R. L. Woo, B. Liang, M. Pozuelo, S. Prikhodko, M. Jackson, N. Goel, M. K. Hudait, D. L. Huffaker, M. S. Goorsky, S. Kodambaka, and R. F. Hicks, “Self-Catalyzed Epitaxial Growth of Vertical Indium Phosphide Nanowires on Silicon”, Nano Lett., 9, 2223 (2009).
    [158] M. Stuber, H. Leiste, S. Ulrich, H. Holleck, and D. Schild, “Microstructure and properties of low friction TiC-C nanocomposite coatings deposited by magnetron sputtering”, Surf. Coat. Tech., 150, 218 (2002).
    [159] K. Fadenberger, I. E. Gunduz, C. Tsotsos, M. Kokonou, S. Gravani, S. Brandstetter, A. Bergamaschi, B. Schmitt, P. H. Mayrhofer, C. C. Doumanidis, and C. Rebholz, “In situ observation of rapid reactions in nanoscale Ni–Al multilayer foils using synchrotron radiation”, Appl. Phys. Lett., 97, 144101 (2010).
    [160] F. Pinakidou, M. Katsikini, P. Patsalas, G. Abadias, and E. C. Paloura, “On the nanostructure of Cu in TixCu1-x and TiN/Cu films: a XAFS study”, J. Nano Res., 6, 43 (2009).
    [161] M. McNallan, D. Ersoy, R. Zhu, A. Lee, C. White, S. Welz, Y. Gogotsi, A. Erdemir, and A. Kovalchenko, “Nano-structured carbide-derived carbon films and their tribology”, Tsinghua Sci. Technol., 10, 699 (2005).
    [162] C. J. Chiang, S. Bull, C. Winscom, and A. Monkman, “A nano-indentation study of the reduced elastic modulus of Alq3 and NPB thin-film used in OLED devices”, Org. Electron., 11, 450 (2010).
    [163] D. Medaboina, V. Gade, S. K. R. Patil, and S. V. Khare, “Effect of structure, surface passivation, and doping on the electronic properties of Ge nanowires: A first-principles study”, Phys. Rev. B, 76, 205327 (2007).
    [164] X. Zhang, B. Luster, A. Church, C. Muratore, A. A. Voevodin, P. Kohli, S. Aouadi, and S. Talapatra, “Carbon nanotube−MoS2 nomposites as solid lubricants”, Appl. Mat. Interfaces, 1, 735 (2009).
    [165] B. M. Venkatesan, B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov, and R. Bashir, “Highly sensitive, mechanically stable nanopore sensors for DNA snalysis”, Adv. Mater., 21, 2771 (2009).
    [166] X. Li, G. Zhang, F. Cheng, B. Guo, and J. Chen, “Synthesis, characterization, and gas-sensor application of WO3 nanocuboids”, J. Electrochem. Soc., 153, H133 (2006).
    [167] Y. D. Huh, J. H. Shim, Y. Kim, and Y. R. Do, “Optical properties of three-band white light emitting diodes”, J. Electrochem. Soc., 150, H57 (2003).
    [168] K. Huang, Q. Pan, F. Yang, S. Ni, and D. He, “Synthesis and field-emission properties of the tungsten oxide nanowire arrays”, Physica E, 39, 219 (2007).
    [169] S. Sen, P. Kanitkar, A. Sharma, K. P. Muthe, A. Rath, S. K. Deshpande, M. Kaur, R. C. Aiyer, S. K. Gupta, and J. V. Yakhmi, “Growth of SnO2/WO2.72 nanowire hierarchical heterostructure and their application as chemical sensor”, Sensor. Actuat. B-Chem., 147, 453 (2010).
    [170] R. Seelaboyina, J. Huang, J. Park, D. H. Kang, and W. B. Choi, “Multistage field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions”, Nanotechnology, 17, 4840 (2006).
    [171] M. Boulova, and G. Lucazeau, “Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy”, J. Solid State Chem., 167, 425 (2002).
    [172] J. H. Ha, P. Muralidharan, and D. K. Kim, “Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts”, J. Alloy. Compd., 475, 446 (2009).
    [173] Y. Wu, Z. Xi, G. Zhang, J. Yu, and D. Guo, “Growth of hexagonal tungsten trioxide tubes”, J. Cryst. Growth, 292, 143 (2006).
    [174] L. G. Teoh, J. Shieh, W. H. Lai, I. M. Hung, and M. H. Hon, “Effect of copolymer and additive concentrations on the behaviors of mesoporous tungsten oxide”, J. Alloy. Compd., 396, 251 (2005).
    [175] F. Xu, S. D. Tse, J. F. Al-Sharab, and B. H. Kear, “Flame synthesis of aligned tungsten oxide nanowires”, Appl. Phys. Lett., 88, 243115 (2006).
    [176] C. Klinke, J. B. Hannon, L. Gignac, K. Reuter, and P. Avouris, “Tungsten oxide nanowire growth by chemically induced strain”, J. Phys. Chem., 109, 17787 (2005).
    [177] M. M. Wilson, S. A. Saveliev, W. C. Jimenez, and G. Salkar, “Flame synthesis of hybrid nanowires with carbon shells and tungsten-oxide cores”, Carbon, 48, 4510 (2010).
    [178] S. Nakamura, and G. Fasol, “The Blue Laser Diode”, 1997, p. 230
    [179] J. Wang, P. S. Lee, and J. Ma, “Synthesis, growth mechanism and room-temperature blue luminescence emission of uniform WO3 nanosheets with W as starting material”, J. Cryst. Growth., 311, 316 (2009).
    [180] T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities”, Science, 285, 1905 (1999).
    [181] M. A. Reshchikov, P. Visconti, and H. Morkoç, “Blue photoluminescence activated by surface states in GaN grown by molecular beam epitaxy”, Appl. Phys. Lett., 78, 177 (2001).
    [182] M. Niederberger, M. H. Bartl, and G. D. Stucky, “Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality”J. Am. Chem. Soc., 124, 13642 (2002).
    [183] M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H.W. Liu, D. X. Shi, B. S. Zou, and H. J. Gao, “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films”, Appl. Phys. Lett., 86, 141901 (2005).
    [184] A. Karuppasamy, and A. Subrahmanyam, “Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering”, J. Appl. Phys., 101, 113522 (2007).
    [185] P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong, and J. G. Lu, “ZnO nanowires synthesized by vapor trapping CVD method”, Chem. Mater., 24, 5133 (2004).
    [186] Q. G. Fu, H. J. Li, X. H. Shi, K. Z. Li, J. Wei, and Z. B. Hu, “Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst”, Mater. Chem. Phys., 100, 108 (2006).
    [187] J.H. Yen, I.C. Leu, M.T. Wu, C.C. Lin, and M.H. Hon, “Effect of nanowire catalyst for carbon nanotubes growth by ICP-CVD”, Diam. Relat. Mater., 14, 841 (2005).
    [188] X. L. Li, J. F. Liu, and Y. D. Li, “Large-scale synthesis of tungsten oxide nanowires with high aspect ratio”, Inorg. Chem., 42, 921 (2003).
    [189] M. Boulova, and G. Lucazeau, “Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy”, J. Solid State Chem., 167, 425 (2002).
    [190] S. H. Lee. H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, and S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3”, Electrochim. Acta., 44, 3111 (1999).
    [191] M. Oring, “The Materials Science of Thin Films”, Academic, Boston, 1992.
    [192] Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater., 13, 9 (2003).
    [193] J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, and Z. L. Wang, “Three-dimensional tungsten oxide nanowire networks”, Adv. Mater., 17, 2107 (2005).
    [194] Y. B. Li, Y. Bando, and D. Golberg, “Quasi-aligned single-crystalline WO2.72 nanotubes and nanowires”, Adv. Mater., 15, 1294 (2003).
    [195] B. Cao, J. Chen, X. Tang, and W. Zhou, “Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection”, J. Mater. Chem., 19, 2323 (2009).
    [196] J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. D. Xu, R. Yang, and Z. L. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays”, J. Appl. Phys., 87, 223108 (2005).
    [197] K. Hong, M. Xie, R. Hu, and H. Wu, “Diameter control of tungsten oxide nanowires as grown by thermal evaporation”, Nanotechnology, 19, 085604 (2008).
    [198] K. Hong, M. Xie, R. Hu, and H. Wu, “Synthesizing tungsten oxide nanowires by a thermal evaporation method”, Appl. Phys. Lett., 90, 173121 (2007).
    [199] C. Ye, X. Fang, Y. Hao, X. Teng, and L. Zhang, “Zinc oxide nanostructures: morphology derivation and evolution”, J. Phys. Chem. B, 109, 19758 (2005).
    [200] S. K. Deb, “Optical and photoelectric properties and colour centres in thin films of tungsten oxide”, Philos., Mag., 27, 801 (1973).
    [201] L. G. Teoh, J. Shieh, W. H. Lai, I. M. Hung, and M. H. Hon, “Structure and optical properties of mesoporous tungsten oxide”, J. Alloy. Compd., 396, 251 (2005).
    [202] T. He, Y. Ma, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang, and J. Yao, “Photochromism of WO3 colloids combined with TiO2 nanoparticles” J. Phys. Chem. B, 106, 12670 (2002).
    [203] X. Li, G. Zhang, F. Cheng, B. Guo, and J. Chen, “Synthesis, Characterization, and Gas-Sensor Application of WO3 Nanocuboids”, J. Electrochem. Soc., 153, H133 (2006).
    [204] W. Smith, Z. Y. Zhang, and Y. P. Zhao, “Structural and optical characterization of WO3 nanorods/films prepared by oblique angle deposition”, J. Vac. Sci. Technol. B, 25, 1875 (2007).
    [205] M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou, and H. J. Gao, “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films”, Appl. Phys. Lett., 86, 141901 (2005).
    [206] C. Paracchini, and G. Schianchi, “Luminescence of WO3”, Phys. Status Solidi A, 72, K129 (1982)
    [207] M. Niederberger, M. H. Bartl, and G. D. Stucky, “Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nanoaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality”, J. Am. Chem. Soc., 124, 13642 (2002).
    [208] Y. H. Li, Y. M. Zhao, R. Z. Ma, Y. Q. Zhu, N. Fisher, Y. Z. Jin, and X. P. Zhange, “ Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes”, J. Phys. Chem. B, 110, 18191 (2006).
    [209] Y. M. Zhao, W. B. Hu, Y. D. Xia, E. F. Smith, Y. Q. Zhu, C. W. Dunnill, and D. H. Gregory, “Preparation and characterization of tungsten oxynitride nanowires”, J. Mater. Chem., 17, 4436 (2007).
    [210] D. J. Kim, and S. I. Pyun, “Hydrogen transport through rf-magnetron sputtered amorphous WO3 film with three kinds of hydrogen injection sites”, Solid State Ionics, 99, 185 (1997).
    [211] K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R. J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor”, Opt. Lett., 29, 2001 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE