研究生: |
謝雲從 Hsieh, Yun-Tsung |
---|---|
論文名稱: |
快速合成不同形態奈米氧化鎢結構與其光學特性之研究 Controllable Morphologies and Optical Properties with Rapid and Efficient Synthesis of Tungsten Oxide Nanobundles |
指導教授: |
施漢章
Shih, Han C. |
口試委員: |
杜正恭
丁志明 呂福興 林景崎 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 162 |
中文關鍵詞: | 奈米氧化鎢 、微波電漿輔助化學氣相沈積 、熱化學氣相沈積 、不同形態 、快速 |
外文關鍵詞: | tungsten oxide nanomaterials, microwave plasma-enhanced chemical vapor deposition, CVD, controllable morphology |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,利用了微波電漿輔助化學氣相沈積系統(Microwave Plasma-Enhanced Chemical Vapor Deposition, MPECVD),以無觸媒的方式,在極短時間內,於矽基板上生長不同形態的氧化鎢 (W18O49 => WO2.72) 奈米材料,成長過程中,不同的反應時間下:1.5、 3 和 4 分鐘,分別生長了WO2.72 的奈米線、奈米棒及奈米片,晶體結構與化學組成經分析得知,這些不同形態WO2.72 奈米材料皆為單晶,且成長方向皆為[010],奈米線為15–30 奈米、奈米棒為40–60奈米、奈米片為30奈米,亦即隨著反應時間的增加,WO2.72奈米材料長與寬的尺寸也隨之增加。另外,陰極激發光(Cathodoluminescence, CL)光譜得知,WO2.72奈米線由於量子尺寸效應,造成了紅移現象,也因為大量缺陷或氧空缺的緣故,WO2.72奈米線發出紅橙光。研究結果顯示,由於具優勢的極短生長時間,讓MPECVD成為一種高效率,並可隨意地控制生長不同形態之WO2.72奈米材料的方法。
相較於MPECVD,熱化學氣相沈積系統(Thermal Chemical Vapor Deposition, TCVD),為一種廣泛並有效控制基板溫度的生長方式,我們利用TCVD以無觸媒的方式,生長不同形態的氧化鎢(WO3) 奈米材料,[002]為主要成長方向,此外, 生成的WO3奈米材料與其光學性質,和生長過程中矽基板溫度的分佈有直接的關係,由於氧空缺的緣故,使得WO3奈米線相較於一般的WO3材料在可見光吸收光譜中有紅移現象,WO3奈米材料的能階也與晶體結構和量子尺寸效應相對應,在TCVD的成長環境下,氧氣流量和矽基板溫度決定了WO3奈米材料的良率與形態。研究結果顯示,在適當的生長環境參數下,TCVD系統為一種簡單、普遍、易控制並可大量生產不同形態WO3奈米材料的生長方式。
[1] R.W. Siegel, E. Hu, and M.C. Roco, “Nanostructure Science and Technology A Worldwide Study,” Loyola College in Maryland, WTEC Hyper-Librarian, Chapter 2, 1999.
[2] R. Feynman, “There’s plenty of room at the bottom”, Engineering and Science, 23, 1960.
[3] G. Binnig, and C. F. Quant, “Atomic force microscope”, Phys. Rev. Lett., 56, 930 (1986).
[4] C. J. Chen, “Introduction to Scanning Tunneling Microscopy”, Oxford University Press, Oxford, (1993).
[5] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy”, Phys. Rev. Lett., 49, 57 (1982).
[6] Created by the Office of Basic Energy Sciences in the U. S. Department of Energy.
[7] R. Nemutudi, M. Kataoka, C. J. B. Ford, N. J. Appleyard, M. Pepper, D. A. Ritchie, and G. A. C. Jones, “Noninvasive lateral detection of coulomb blockade in a quantum dot fabricated using atomic force microscopy”, Appl. Phys. Lett., 95, 2557 (2004).
[8] R. Tenne, “Fullerene-like structures and nanotubes from inorganic compounds”, Endeavour, 20, 97 (1996).
[9] T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, “Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition”,Chem. Phys. Lett., 381, 422 (2003).
[10] N. J. Petch, “The cleavage of polycrystals”, J. Iron. Steel. Res. Int., 174, 25 (1953).
[11] T. G. Nieh, and J. Wadsworth, “Hall-petch relation in nanocrystalline solids”, Scripta. Mater., 25, 955 (1991).
[12] V. R. Oleshko, J. M. Howe, S. Shukla, and S. Seal, “High–resolution and analytical tem investigation of metastable–tetragonal phase stabilization in undoped nanocrystalline zirconia”, J. Nanosci. Nanotechno., 4, 867 (2004).
[13] J. V. Barth, G. Costantini, and K. Kern, “Engineering atomic and molecular nanostructures at surfaces”, Nature, 437, 671 (2005).
[14] Y. Yin, and A. P. Alivisatos, “Colloidal nanocrystal synthesis and the organic- inorganic interface”, Nature, 437, 664 (2005).
[15] D. Loss, Quantum phenomena in nanotechnology”, Nanotechnology, 20, 430205 (2009).
[16] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee. J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display”, Appl. Phys. Lett., 75, 3129 (1999).
[17] W. A. de Heer, A. Chatelaine, and D. Ugarte, “A carbon nanotube field-emission electron source”, Science, 270, 1179 (1995).
[18] K. A. Dean, and B. R. Chalamala, “The environmental stability of field emission from single-walled carbon nanotubes”, Appl. Phys. Lett., 75, 3017 (1999).
[19] Alain Nouailhat “An Introduction to Nanoscience and Nanotechnology”, (2008).
[20] Y. T. Hsieh, M. W. Huang, C. C. Chang, U. S. Chen, and H. C. Shih, “Growth and optical properties of uniform tungsten oxide nanowire bundles via a two-step heating process by thermal evaporation”, Thin Solid Films, 519, 1668 (2010).
[21] K. H. Lee, S. W. Lee, R. R. Vanfleet, and W. Sigmund, “Amorphous silica nanowires grown by the vapor–solid mechanism”, Chem. Phys. Lett., 376, 498 (2003).
[22] Y. T. Hsieh, L. W. Chang, C. C. Chang, and H. C. Shih, “Synthesis of WO3 nanorods by thermal CVD at various gas flow rates and substrate temperatures”, Electrochem. Solid St., 14, K40 (2011).
[23] X. Xiang, C. B. Cao, Y. J. Guo, and H. S. Zhu, “A simple method to synthesize gallium oxide nanosheets and nanobelts”, Chem. Phys. Lett., 378, 660 (2003).
[24] Y. G. Zhang, N. L. Wang, R. R. He, J. Liu, X. Z. Zhang, and J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture”, J. Cryst. Growth, 233, 803 (2001).
[25] S. H. Tasi, C. W. Chao, C. L. Lee, X. W. Liu, I. N. Lin, and H. C. Shih, “Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis”, Eletrochem. Solid-State Lett., 2, 247 (1999).
[26] J. M. Ting, and R. M. Liu, “Carbon nanowires with new microstructures”,
Carbon, 41, 579 (2003).
[27] L. H. Chan, K. H. Homg, S. H. Lai, X. W. Liu, and H. C. Shih, “The formation and characterization of palladium nanowires in growing carbon nanotubes using microwave plasma-enhanced chemical vapor deposition”, Thin Solid Films, 423, 27 (2003).
[28] X. B. Zeng, Y. Y. Xu, S. B. Zhang, Z. H. Hu, H. W. Diao, Y. Q. Wang, G. L. Kong, and X. B. Liao, “Silicon nanowires grown on a pre-annealed Si substrate”, J. Cryst. Growth, 247, 13 (2003).
[29] M. J. Alam, and D. C. Cameron, “Investigation of annealing effects on sol-gel deposited transparent conductive ZnO:Al thin films in different atmospheres”, J. Sol-Gel Sci. Techn., 25, 137 (2002).
[30] H. G. Choi, Y. H. Jung, and D K. Kim, “Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet”, J. Am. Ceram., Soc., 88, 1684 (2005).
[31] S. Sun, Y. Zhao, Y. Xia, Z. Zou, G. Min, and Y. Zhu, “Bundled tungsten oxide nanowires under thermal processing”, Nanotechnology, 19, 305709 (2008).
[32] O. G. Cervantes , J. D. Kuntz, A. E. Gash, and Z. A. Munir, “Activation energy of tantalum–tungsten oxide thermite reactions”, Combust. Flame, 157, 1566 (2010).
[33] D. F. Zhang, L. D. Sun, J. L. Yin, and C. H. Yan, “Low-temperature fabrication of highly crystalline SnO2 nanorods”, Adv. Mater., 15, 12, (2003).
[34] F. Chen, G. Q. Xu, and T. S. A. Hor, “Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion”, Mater. Lett., 57, 3282 (2003).
[35] J. Jang, and H. Yoon, “Facile fabrication of polypyrrole nanotubes using reverse microemulsion polymerization”, Chem. Commun., 6, 720 (2003).
[36] S. S. Hong, M. S. Lee, and G. D. Lee, “Photocatalytic decomposition of p-nitrophenol over titanium dioxide prepared by reverse microemulsion method using nonionic surfactants with different hydrophilic groups”, React. Kinet. Catal. L., 80, 145 (2003).
[37] D. Xu, X. Shi, G. Guo, L. Gui and Y. Tang, “Electrochemical preparation of CdSe nanowire arrays”, J. Phys. Chem. B, 104, 5061 (2000).
[38] Q. Zhang, A. K. Chakraborty, and W. I. Lee, “WO2.72 and WO3 nanorod arrays prepared by AAO-templated electrodeposition method”, Bull. Korean Chem. Soc., 30, 227 (2009).
[39] Y. Kashimura, H. Nakashima, K. Furukawa, and K. Torimitsu, “Fabrication of nano-gap electrodes using electroplating technique”, Thin Solid Films, 438, 317 (2003).
[40] M.R. Vaezi, S.K. Sadrnezhaad, and L. Nikzad, “Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics”, Colloid. Surface. A, 315, 176 (2008).
[41] P. A. Cox, “Transition Metal Oxides”, Oxford, 1995.
[42] E. Salje, “The orthorhombic phase of WO3”, Acta. Crystallogr. B, 33, 574 (1977).
[43] B. D. Cullity, “Elements of X-Ray Diffraction”, Addison-Wesey, 1990.
[44] A. S. Wells, “Structural Inorganic Chemistry” Oxford, 1987.
[45] S. Wang, J. Zhao, T. Zhou, L. Wang, and A. Kuang, “Thermal decomposition of ktn gel and formation of perovskite structure KTN”, Ferroelectrics., 195, 5 (1997).
[46] A. G. S. Filho, V. N. Freire, J. M. Sasaki, J. M. Filho, J. F. Juliao, and U. U. Gomes, “Coexistence of triclinic and monoclinic phases in WO3 ceramics”, J. Raman Spectrosc., 31, 451 (2000).
[47] M. Boulova, and G. Lucazeau, “Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy”, J. Solid State Chem., 167, 425 (2002).
[48] P. J. Desre, “A thermodynamic model for the nanocrystal to glass transition of intermetallic compounds subjected to high deformation by mechanical attrition—Application to L12 phases” Nanostruct. Mater., 8, 678 (1997).
[49] G. A. Niklasson, and C. G. Granqvist, “Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these”, J. Mater. Chem., 17, 127 (2007).
[50] S. M. Cui, G. H. Lu, S. Mao, K. H. Yu, and J. H. Chen, “One-dimensional tungsten oxide growth through a grain-by-grain buildup process”, Chem. Phys. Lett., 485, 64 (2010).
[51] H. Qi, C. Wang, and J. Liu, “A simple method for the synthesis of highly oriented potassium-doped tungsten oxide nanowires”, Adv. Mater., 15, 411 (2003).
[52] X. L. Li, J. F. Liu, and Y. D. Li, “Large-scale synthesis of tungsten oxide nanowires with high aspect ratio”, Inorg. Chem., 42, 921 (2003).
[53] Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth”, J. Am. Chem. Soc., 123, 3165 (2001).
[54] L. F. Chi, S. Z. Deng, N. S. Xu, J. Chen, J. C. She, and X. H. Liang, “The study of optimizing growth conditions for improving field emission property of WO2.72 nanorod arrays”, Nanotechnology, 17, 5590, (2006).
[55] G. Gu, B. Zheng, W. Q. Han, S. Roth, and J. Liu, “Tungsten oxide nanowires on tungsten substrates”, Nano. Lett., 8, 849 (2002).
[56] S. Wang, Y. He, J. Zou, Y. Jiang, J. Xu, B. Huang, C. T. Liu, and P. K. Liaw, “Synthesis of single-crystalline tungsten nanowires by nickel-catalyzed vapor-phase method at 850 °C”, J. Cryst. Growth, 306, 433 (2007).
[57] M. Gillet, R. Delamare, and E. Gillet, “Growth of epitaxial tungsten oxide nanorods”, J. Cryst. Growth, 279, 93 (2005).
[58] Z. Liu, Y. Bando, and C. Tang, “Synthesis of tungsten oxide nanowires”, Chem. Phys. Lett., 372, 179 (2003).
[59] Y. T. Hsieh, S. H. Hsueh, U. S. Chen, M. W. Huang, and H. C. Shih, “Synthesis of tungsten oxide nanoslab bundles by microwave plasma-enhanced chemical vapor deposition”, Jpn. J. Appl. Phys., 50, 01AB05 (2011).
[60] C. S. Blackman, and I. P. Parkin, “Atmospheric pressure chemical vapor deposition of crystalline monoclinic WO3 and WO3-x thin films from reaction of WCl6 with O-containing solvents and their photochromic and electrochromic properties”, Chem. Mater., 17, 1583 (2005).
[61] F. Chavez, C. Felipe, E. Lima, V. Lara, C. A. Chavez, and M. A. Hernandez, “Preparation of self-organized porous tungsten oxide using HFCVD technique”, Mater. Chem. Phys., 120, 36 (2010).
[62] C. M. White, J. S. Jang, S. H. Lee, J. Pankow, and A. C. Dillon, “Photocatalytic activity and photoelectrochemical property of nano-WO3 powders made by hot-wire chemical vapor deposition”, Electrochem. Solid. St., 13, B120 (2010).
[63] Y. Zhang, Y. Chen, H. Liu, Y. Zhou, R. Li, M. Cai, and X. Sun, “Three-dimensional hierarchical structure of single crystalline tungsten oxide nanowires: construction, phase transition, and voltammetric behavior”, J. Phys. Chem., 113, 1746 (2009).
[64] Y. H. Lee, C. H. Choi, Y. T. Jang, E. K. Kim, and B. K. Ju, “Tungsten nanowires and their field electron emission properties”, Appl. Phys. Lett., 81, 745 (2002).
[65] M. D. Giulio, D. Manno, G. Micocci, A. Serra, and A. Tepore, “Gas-sensing properties of sputtered thin films of tungsten oxide”, J. Phys. D: Appl. Phys. 30, 3211 (1997).
[66] A. Monteiro, M. F. Costa, B. Almeida, V. Teixeira, J. Gago, and E. Roman, “Structural and optical characterization of WO3 deposited on glass and ITO”, Vaccum, 64, 287 (2002).
[67] A. Karuppasamy, and A. Subrahmanyam, “Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering”, J. Appl. Phys., 101, 113522 (2007).
[68] Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, “WO3 nanorods/nanobelts synthesized via physical vapor deposition process”, Chem. Phys. Lett., 367, 214 (2003).
[69] X. Chang, S. Sun, and Y. Yin, “Green synthesis of tungsten trioxide monohydrate nanosheets as gas sensor”, Mater. Chem. Phys., 126, 717 (2010).
[70] A. Yan, C. Xie, D. Zeng, S. Cai, and H. Li, “Synthesis, formation mechanism and illuminated sensing properties of 3D WO3 nanowall”, J. Alloy. Compd., 495, 88 (2010).
[71] Y. Qin, M. Hu, and J. Zhang, “Microstructure characterization and NO2-sensing properties of tungsten oxide nanostructures”, Sensor. Actuat. B-Chem., 150, 339 (2010).
[72] S. Sun, Z. Zou, and G. Min, “Synthesis of tungsten disulfide nanotubes from different precursor”, Mater. Chem. Phys., 114, 884 (2009).
[73] T. D. Senguttuvan, V. Srivastava, J. S. Tawal, M. Mishra, S. Srivastava, and K. Jain, “Gas sensing properties of nanocrystalline tungsten oxide synthesized by acid precipitation method”, Sensor. Actuat. B-Chem., 150, 384 (2010).
[74] Y. M. Zhao, and Y. Q. Zhu, “Room temperature ammonia sensing properties of WO2.72 nanowires”, Sensor. Actuat. B-Chem., 137, 27 (2009)
[75] C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, “Crystallographically oriented mesoporous WO3 Films: synthesis, characterization, and applications”, J. Am. Chem. Soc., 123, 10639 (2001).
[76] J. D. Kuntz, O. G. Cervantes, A. E. Gash, and Z. A. Munir, “Activation energy of tantalum–tungsten oxide thermite reactions”, Combust. Flame., 157, 1566 (2010).
[77] H. Wang, X. Quan, Y. Zhang, and S. Chen, “Direct growth and photoelectrochemical properties of tungsten oxide nanobelt arrays”, Nanotechnology, 19, 065704 (2008).
[78] Y. Q. Zhu, W. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, and H. Terrones, “Tungsten oxide tree-like structures”, Chem. Phys. Lett., 309, 327 (1999).
[79] A. W. Hassel, S. Milenkovic, and A. J. Smith, “Large scale synthesis of single crystalline tungsten nanowires with extreme aspect ratios”, Phys. Status. Solidi. A, 207, 858 (2010).
[80] M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe, and W. Ueda, “Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation”, J. Mater. Chem., 20, 1811 (2010).
[81] Q. Zhang, A. K. Chakraborty, and W. I. Lee, “WO2.72 and WO3 nanorod arrays prepared by AAO-templated electrodeposition method”, Bul. Korean Chem Soc., 30, 227 (2009).
[82] L. Zhu, J. Xu, Y. Xiu, Y. Sun, D. W. Hess, and C. P. Wong, “Electrowetting of aligned carbon nanotube films”, J. Phys. Chem. B, 110, 15945 (2010).
[83] S. Armini, I. U. Vakarelski, C. M. Whelan, K. Maex, and K. Higashitani, “Nanoscale indentation of polymer and composite polymer−silica core−shell submicrometer particles by atomic force microscopy”, Langmuir, 23, 2007 (2007).
[84] C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen, and R. H. Horng, “Three-step growth of well-aligned ZnO nanotube arrays by self-catalyzed metalorganic chemical vapor deposition method”, Cryst. Growth Des., 9, 4555 (2009).
[85] Y. Talyosef, B. Markovsky, R. Lavi, G. Salitra, D. Aurbach, D. Kovacheva, M. Gorova, E. Zhecheva, and R. Stoyanova, “Comparing the behavior of nano-and microsized particles of LiMnNiO spinel as cathode materials for Li-Ion batteries”, J. Electrochem. Soc., 154, A682 (2007).
[86] F. Cui, C. Feng, R. Xie, Z. Hua, H. Ohtsuka, Y. Sakka, and J. Shi, “Magnetic field-induced off-resonance third-order optical nonlinearity of iron oxide nanoparticles incorporated mesoporous silica thin films during heat treatment”, Opt. Express, 18, 2010 (2010).
[87] L. Vayssieres, L. Rabenberg, and A. Manthiram, “Aqueous chemical route to ferromagnetic 3-D arrays of iron nanorods”, Nano Lett., 2, 1393 (2002).
[88] N. T. Flynn, and A. A. Gewirth, “Synthesis and characterization of molybdate-modified platinum nanoparticles”, Phys. Chem. Chem. Phys., 6, 1310 (2004).
[89] Y. M. Zhao, and Y. Q. Zhu, “Room temperature ammonia sensing properties of WO2.72 nanowires”, Sens. Actuators B, 137, 27 (2009).
[90] T. He, Y. Ma, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang, and J. Yao, “Photochromism of WO3 Colloids Combined with TiO2 Nanoparticles”, J. Phys. Chem. B, 106, 12670(2002).
[91] J. Y. Luo, F. L. Zhao, L. Gong, H. J. Chen, J. Zhou, Z. L. Li, S. Z. Deng, and N. S. Xu, “Ultraviolet-visible emission from three-dimensional WO3-x nanowire networks”, Appl. Phys. Lett., 91, 093124 (2007).
[92] K. Huang, Q. Pan, F. Yang, S. Ni, and D. He, “The catalyst-free synthesis of large-area tungsten oxide nanowire arrays on ITO substrate and field emission properties”, Mater. Res. Bull., 43, 919 (2008).
[93] M. Akiyama, J.Tamaki, M. Miura, and N. Yamazoe, “Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2”, Chem. Lett., 1, 1611 (1991).
[94] J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, and N. Yamazoe, “Grain-size effects in tungsten oxide-based sensor for nitrogen oxides”, J. Electrochem. Soc., 141, 2207 (1994).
[95] C. W. Chu, M. J. Deen, and R. H. Hill, “Sensors for detecting dub‐ppm no using photochemically produced amorphous tungsten oxide”, J. Electrochem. Soc., 145, 4219 (1998).
[96] H. M. Lin, C. M. Hsu, H. Y. Yang, P. Y. Lee, and C. C. Yang, “Nanocrystalline WO3-based H2S sensors”, Sens. Actuators B, 22, 63 (1994).
[97] K.H. Lee, Y.K. Fang, W.J. Lee, J.J. Ho, K.H. Chen, and K.S. Liao, “Novel electrochromic devices (ECD) of tungsten oxide (WO3) thin film integrated with amorphous silicon germanium photodetector for hydrogen sensor”, Sens. Actuators, B, 69 (2000) 96.
[98] X. Li, G. Zhang, F. Cheng, B. Guo, and J. Chen, “Synthesis, characterization, and gas-sensor application of WO3 nanocuboids”, J. Electrochem. Soc., 153, H133 (2006).
[99] A. Ponzoni, E. Comini, and G. Sberveglieri, “Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks”, Appl. Phys. Lett., 88, 203101 (2006).
[100] E. K. Heidari, C. Zamani, E. Marzbanrad, B. Raissi, and S. Nazarpour, “WO3-based NO2 sensors fabricated through low frequency AC electrophoretic deposition”, Sensor. Actuat. B-Chem., 146, 165 (2010).
[101] Y. Li, X. Su, J. Jian, and J. Wang, “Ethanol sensing properties of tungsten oxide nanorods prepared by microwave hydrothermal method”, Ceram. Int., 36, 1917 (2010).
[102] Y. S. Kim, S. C. Ha, K. Kim, H. Yang, S. Y. Choi, and Y. T. Kim, “Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film”, Appl. Phys. Lett., 86, 213105 (2005).
[103] C. Aiyer, S. K. Gupta, and J. V. Yakhmi, “Growth of SnO2/WO2.72 nanowire hierarchical heterostructure and their application as chemical sensor”, Sensor. Actuat. B-Chem., 147, 453 (2010).
[104] C. S. Rout, M. Hegde, and C. N. R. Rao, “H2S sensors based on tungsten oxide nanostructures”, Sensor. Actuat. B-Chem., 128, 488 (2008).
[105] C. S. Rout, A. Govindaraj, and C. N. R. Rao., “High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires”, J. Mater. Chem., 16, 3936 (2006).
[106] B. Cao, J. Chen, X. Tang, and W. Zhou, “Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection”, J. Mater. Chem., 19, 2323 (2009).
[107] Y. S. Kim, Sensor. “Thermal treatment effects on the material and gas-sensing properties of room-temperature tungsten oxide nanorod sensors”, Actuat. B-Chem., 137, 297 (2009).
[108] S. Sen, P. Kanitkar, A. Sharma, K. P. Muthe, A. Rath, S. K. Deshpande, M. Kaur, R., “Growth of SnO2/WO2.72 nanowire hierarchical heterostructure and their application as chemical sensor”, Sensor. Actuat. B-Chem., 147, 453 (2010).
[109] K. Huang, Q. Pan, F. Yang, S. Ni, and D. He, “Synthesis and field-emission properties of the tungsten oxide nanowire arrays”, Physica. E, 39, 219 (2007).
[100] Y. M. Zhao, Y. H. Li, I. Ahmad, D. G. Mccartney, and Y. Q. Zhu, “Two-dimensional tungsten oxide nanowire networks”, Appl. Phys. Lett., 89, 133116 (2006).
[101] K. Huang, Q. Pan, F. Yang, S. Ni, and D. He, “The catalyst-free synthesis of large-area tungsten oxide nanowire arrays on ITO substrate and field emission properties”, Mater. Res. Bull., 43, 919 (2008).
[102] S. Jeon, H. Kim, and K. Yong, “Deposition of tungsten oxynitride nanowires through simple evaporation and subsequent annealing”, J. Vac. Sci. Technol. B, 27, 671 (2009).
[103] Y. H. Lee, C. H. Choi, Y. T. Jang, E. K. Kim, and B. K. Ju, “Tungsten nanowires and their field electron emission properties”, Appl. Phys. Lett., 81, 745 (2002).
[104] M. Furubayashi, K. Nagato, H. Moritani, T. Hamaguchi, and M. Nakao, “Field emission properties of discretely synthesized tungsten oxide nanowires”, Microelectron. Eng., 87, 1594 (2010).
[105] J. Rosenqvist, K. Axe, S. Sjoberg, and P. Persson, “Adsorption of dicarboxylates on nano-sized gibbsite particles: effects of ligand structure on bonding mechanisms”, Colloid. Surface. A, 220, 91 (2003).
[106] L. Cha, C. Scheu, H. Clemens, H. F. Chladil, G. Dehm, R. Gerling, and A. Bartels, “Nanometer-scaled lamellar microstructures in Ti–45Al–7.5Nb–(0; 0.5)C alloys and their influence on hardness”, Intermetallics, 16, 868 (2008).
[107] B. Chaudhry, H. Ashton, M. Yost, S. Bull, and D. Frankel, “Nanoscale viscoelastic properties of an aligned collagen scaffold”, J. Mater. Sci-Mater. M., 20, 257 (2009).
[108] M. A. Baker, S. Klose, C. Rebholz, A. Leyland, and A. Matthews, “Evaluating the microstructure and performance of nanocomposite PVD TiAlBN coatings”, Surf. Coat. Tech., 151, 338 (2002).
[109] J. Thangala, S. Vaddiraju, S. Malhotra, V. Chakrapani, and M. K. Sunkara, “A hot-wire chemical vapor deposition (CVD) setup for the synthesis of metal oxide and their alloy nanowire arrays”, Thin Solid Films, 517, 3600 (2009).
[110] C. D. Guerra, M. F. Chioncel, and J. Piqueras, “Structural and cathodoluminescence assessment of transition metal oxide nanostructures grown by thermal deposition methods”, Superlattices Microstruct, 45, 145 (2009).
[111] J. H. Ha, P. Muralidharan, and D. K. Kim, “Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts”, J. Alloys Compd., 475, 446 (2009).
[112] W. Hu, Y. Zhao, Z. Liu, C. W. Dunnill, D. H. Gregory, and Y. Zhu, “Nanostructural evolution: from one-dimensional tungsten oxide nanowires to three-dimensional ferberite flowers”, Chem. Mater., 20, 5657 (2008).
[113] R. Koc and S. K. Kodambaka, “ChemInform abstract: tungsten carbide (WC) synthesis from novel precursors”, J. Eur. Ceram. Soc., 20, 1859 (2000).
[114] T. Zehnder and J. Patscheider, “Nanocomposite TiC/a–C:H hard coatings deposited by reactive PVD”, Surf. Coat. Tech., 133, 138 (2000).
[115] R. Gupta, A. Khandelwal, A. Gupta and P. Schaaf, “Characterization of iron oxide films prepared by laser irradiation in oxygen atmosphere”, J. Phys. D Appl. Phys., 42, 185305 (2009).
[116] H. Tomaszewski, H. Poelman, D. Depla, D. Poelman, R. D. Gryse, L. Fiermans, M. F. Reyniers, G. Heynderickx and G. Marin, “TiO2 films prepared by DC magnetron sputtering from ceramic targets”, Vacuum, 68, 31 (2002).
[117] Z. B. Zeng, Y. Y. Xu, S. B. Zhang, Z. H. Hu, H. W. Diao, Y. Q. Wang, G. L. Kong, and X. B. Liao, “Silicon nanowires grown on a pre-annealed Si substrate”, J. Cryst. Growth, 247, 13 (2003).
[118] B. Yihong, P. Qiao, T. Chong, and Z. Shen, “Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition”, Adv. Mater., 14, 64 (2002).
[119] W. H. Wang, Y. R. Peng, P. K. Chuang, and C. T. Kuo, “Low-temperature growth mechanism of SWNTs networks by buffer layer-assisted MPCVD”, Diam. Relat. Mater., 15, 1047 (2006).
[120] W. M. Arnoldbik, D. Knoesen, N. Tomozeiu, and F.H.P.M. Habraken, “Nano-scale effects of swift heavy ion irradiation in SiOx layers and multilayers”, Nucl. Instrum. Meth. B, 258 199 (2007).
[121] A. H. Gomez, J. T. Grant, P. J. Cumpson, M. Jenko, F. S. A. Tostado, C. R. Brundle, T. Conard, G. Conti, C. S. Fadley, J. Fulghum, K. Kobayashi, L. Kover, H. Nohira, R. L. Opila, S. Oswald, R. W. Raynter, R. M. Wallace, W. S. M. Werner, and J. Wolstenholme, “Report on the 47th IUVSTA Workshop ‘Angle-Resolved XPS: the current status and future prospects for angle-resolved XPS of nano and subnano films”,Surf. Interface Anal., 41, 840 (2009).
[122] F. Simon, A. Kukovecz, Z. Konya, R. Pfeiffer, and H. Kuzmany, “Highly perfect inner tubes in CVD grown double-wall carbon nanotubes”, Chem. Phys. Lett., 413, 506 (2005).
[123] A. C. Sosa, P. Schaaf, J. A. R. Esqueda, J. A. S. Harutinian, and A. Oliver, “Excimer laser absorption by metallic nano-particles embedded in silica”, J. Phys. D Appl. Phys., 40, 1890 (2007).
[124] I. Tunc, S. Suzer, M. A. C. Duarte, and L. M. L. Marzan, “XPS characterization of Au (Core)/SiO2 (Shell) nanoparticles”,J. Phys. Chem. B, 109, 7597 (2005).
[125] H. Kobayashi, and M. W. Brechbiel, “Nano-sized MRI contrast agents with dendrimer cores”, Adv. Drug. Deliver., 57, 2271 (2005).
[126] T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H. Hsieh, and I. C. Chen, “Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates”, Scripta. Mater., 57, 53 (2007).
[127] Z. G. Zhao, and M. Miyauchi, “A novel visible-light-driven photochromic material with high-reversibility: tungsten oxide-based organic–inorganic hybrid microflowers”, Chem. Commun., 10, 2204 (2009).
[128] S. Gubbala, J. Thangala, and M. K. Sunkara, “Nanowire-based electrochromic devices”, Sol. Energ. Mat. Sol. C, 91, 813 (2007).
[129] J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R. Yang, and Z. L. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays”, Appl. Phys. Lett., 87, 223108 (2005).
[130] Y. M. Zhao, and Y. Q. Zhu, “Room temperature ammonia sensing properties of WO2.72 nanowires”, Sensors Actuat. B-Chem., 137, 27 (2009).
[131] N. Shankar, M. F. Yu, S. P. Vanka, and N. G. Glumac, “Synthesis of tungsten oxide (WO3) nanorods using carbon nanotubes as templates by hot filament chemical vapor deposition”,Mater. Lett., 60, 771 (2006).
[132] J. H. Ha, P. Muralidharan, and D. K. Kim, “Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts”, J. Alloy. Compd., 475, 446 (2007).
[133] S. J. Wang, W. J. Lu, G. Cheng, X. H. Jiang, and Z. L. Du, “ Electronic transport property of single-crystalline hexagonal tungsten trioxide nanowires”, Appl. Phys. Lett., 94, 263106 (2009).
[134] S. Sun, Z. Zou, and G. Min, “Synthesis of bundled tungsten oxide nanowires with controllable morphology”, Mater. Charact., 60, 437 (2009).
[135] G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele, “Highly ordered monocrystalline silver nanowire arrays”,J. Appl. Phys., 91, 3243 (2002).
[136] V. Y. Prinz, D. Grutzmacher, A. Beyer, C. David, B. Ketterer, and E. Deckardt, “A new technique for fabricating three-dimensional micro- and nanostructures of various shapes”, Nanotechnology, 12, 399 (2001).
[137] L. Chi, N. Xu, S. Deng, J. Chen, and J. She, “An approach for synthesizing various types of tungsten oxide nanostructure”, Nanotechnology, 17, 5590 (2006).
[138] Y. Z. Jin, Y. Q. Zhu, R. L. D. Whitby, N. Yao, R. Ma, P. C. P. Watts, H. W. Kroto, and D. R. M. Walton, “Simple approaches to quality large-scale tungsten oxide nanoneedles”, J. Phys. Chem. B, 108, 15572 (2004).
[139] Y. Wu, Z. Xi, G. Zhang, J. Yu, and D. Guo, “Growth of hexagonal tungsten trioxide tubes”, J. Cryst. Growth, 292, 143 (2006).
[140] S. Wang, Y. He, B. Huang, J. Zou, C. T. Liu, and P. K. Liaw, “Formation and growth mechanism of tungsten oxide microtubules”, Chem. Phys. Lett., 427, 350 (2006).
[141] X. Zhao, T. L. Y. Cheung, X. Zhang, D. H. L. Ng, and J. Yu, “Facile preparation of strontium tungstate and tungsten trioxide hollow spheres”, J. Am. Ceram. Soc., 89, 2960 (2006).
[142] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, “Diamond synthesis from gas phase in microwave plasma”, J. Cryst. Growth, 62, 642 (1983).
[143] X. L. Li, J. F. Liu, and Y. D. Li Y D, “Large-scale synthesis of tungsten oxide nanowires with high aspect ratio”, Inorg. Chem., 42, 921 (2003).
[144] K. Hong, Q. Pan, F. Yang, S. Ni and D. He, “The catalyst-free synthesis of large-area tungsten oxide nanowire arrays on ITO substrate and field emission properties”, Mater. Res. Bull. 43, 919 (2008).
[145] K. Hong, M. Xie and H. Wu, “Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature”, Nanotechnology, 17, 4830 (2006).
[146] A. Baserga, V. Russo, F. D. Fonzo, A. Bailini, D. Cattaneo, C. S. Casari, A. L. Bassi and C. E. Bottani, “Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization”,Thin Solid Films, 515, 6465 (2007).
[147] S. H. Lee. H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, and S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3”, Electrochim. Acta., 44, 3111 (1999).
[148] K. Hong, M. Xie, and H. Wu, “Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature”,Nanotechnology, 17, 4830 (2006).
[149] R. Hu, H. Wu, and K. Hong, “Growth of uniform tungsten oxide nanowires with small diameter via a two-step heating process”,J. Cryst. Growth, 306, 395 (2007).
[150] C. Ye, X. Fang, Y. Hao, X. Teng, and L. Zhang, “Zinc oxide nanostructures: morphology derivation and evolution”, J. Phys. Chem. B, 109, 19758 (2005).
[151] S. J. Kwon, “Theoretical analysis of non-catalytic growth of nanorods on a substrate”,J. Phys. Chem. B, 110, 3876 (2006).
[152] I. Levchenko, and K. Ostrikov, “Nanostructures of various dimensionalities from plasma and neutral fluxes”, J. Phys. D: Appl. Phys., 40, 2308 (2007).
[153] M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou and H. J. Gao, “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films”,Appl. Phys. Lett., 86, 141901 (2005).
[154] K. Lee, W. S. Seo and J. T. Park, “Synthesis and optical properties of colloidal tungsten oxide nanorods”, J. Am. Chem. Soc., 125, 3408 (2003).
[155] Y. H. Li, Y. M. Zhao, R. Z. Ma, Y. Q. Zhu, N. Fisher, Y. Z. Jin and X. P. Zhang, “Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes”, J. Phys. Chem. B, 110, 18191 (2006).
[156] P. E. Hovsepian, A. P. Ehiasarian, Y. P. Purandare, R. Braun, and I. M. Ross, “Effect of high ion irradiation on the structure, properties and high temperature tribology of nanoscale CrAlYN/CrN multilayer coating deposited by HIPIMS-HIPIMS technique”, Plasma Process Polym., 6, S118 (2009).
[157] L. Gao, R. L. Woo, B. Liang, M. Pozuelo, S. Prikhodko, M. Jackson, N. Goel, M. K. Hudait, D. L. Huffaker, M. S. Goorsky, S. Kodambaka, and R. F. Hicks, “Self-Catalyzed Epitaxial Growth of Vertical Indium Phosphide Nanowires on Silicon”, Nano Lett., 9, 2223 (2009).
[158] M. Stuber, H. Leiste, S. Ulrich, H. Holleck, and D. Schild, “Microstructure and properties of low friction TiC-C nanocomposite coatings deposited by magnetron sputtering”, Surf. Coat. Tech., 150, 218 (2002).
[159] K. Fadenberger, I. E. Gunduz, C. Tsotsos, M. Kokonou, S. Gravani, S. Brandstetter, A. Bergamaschi, B. Schmitt, P. H. Mayrhofer, C. C. Doumanidis, and C. Rebholz, “In situ observation of rapid reactions in nanoscale Ni–Al multilayer foils using synchrotron radiation”, Appl. Phys. Lett., 97, 144101 (2010).
[160] F. Pinakidou, M. Katsikini, P. Patsalas, G. Abadias, and E. C. Paloura, “On the nanostructure of Cu in TixCu1-x and TiN/Cu films: a XAFS study”, J. Nano Res., 6, 43 (2009).
[161] M. McNallan, D. Ersoy, R. Zhu, A. Lee, C. White, S. Welz, Y. Gogotsi, A. Erdemir, and A. Kovalchenko, “Nano-structured carbide-derived carbon films and their tribology”, Tsinghua Sci. Technol., 10, 699 (2005).
[162] C. J. Chiang, S. Bull, C. Winscom, and A. Monkman, “A nano-indentation study of the reduced elastic modulus of Alq3 and NPB thin-film used in OLED devices”, Org. Electron., 11, 450 (2010).
[163] D. Medaboina, V. Gade, S. K. R. Patil, and S. V. Khare, “Effect of structure, surface passivation, and doping on the electronic properties of Ge nanowires: A first-principles study”, Phys. Rev. B, 76, 205327 (2007).
[164] X. Zhang, B. Luster, A. Church, C. Muratore, A. A. Voevodin, P. Kohli, S. Aouadi, and S. Talapatra, “Carbon nanotube−MoS2 nomposites as solid lubricants”, Appl. Mat. Interfaces, 1, 735 (2009).
[165] B. M. Venkatesan, B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov, and R. Bashir, “Highly sensitive, mechanically stable nanopore sensors for DNA snalysis”, Adv. Mater., 21, 2771 (2009).
[166] X. Li, G. Zhang, F. Cheng, B. Guo, and J. Chen, “Synthesis, characterization, and gas-sensor application of WO3 nanocuboids”, J. Electrochem. Soc., 153, H133 (2006).
[167] Y. D. Huh, J. H. Shim, Y. Kim, and Y. R. Do, “Optical properties of three-band white light emitting diodes”, J. Electrochem. Soc., 150, H57 (2003).
[168] K. Huang, Q. Pan, F. Yang, S. Ni, and D. He, “Synthesis and field-emission properties of the tungsten oxide nanowire arrays”, Physica E, 39, 219 (2007).
[169] S. Sen, P. Kanitkar, A. Sharma, K. P. Muthe, A. Rath, S. K. Deshpande, M. Kaur, R. C. Aiyer, S. K. Gupta, and J. V. Yakhmi, “Growth of SnO2/WO2.72 nanowire hierarchical heterostructure and their application as chemical sensor”, Sensor. Actuat. B-Chem., 147, 453 (2010).
[170] R. Seelaboyina, J. Huang, J. Park, D. H. Kang, and W. B. Choi, “Multistage field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions”, Nanotechnology, 17, 4840 (2006).
[171] M. Boulova, and G. Lucazeau, “Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy”, J. Solid State Chem., 167, 425 (2002).
[172] J. H. Ha, P. Muralidharan, and D. K. Kim, “Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts”, J. Alloy. Compd., 475, 446 (2009).
[173] Y. Wu, Z. Xi, G. Zhang, J. Yu, and D. Guo, “Growth of hexagonal tungsten trioxide tubes”, J. Cryst. Growth, 292, 143 (2006).
[174] L. G. Teoh, J. Shieh, W. H. Lai, I. M. Hung, and M. H. Hon, “Effect of copolymer and additive concentrations on the behaviors of mesoporous tungsten oxide”, J. Alloy. Compd., 396, 251 (2005).
[175] F. Xu, S. D. Tse, J. F. Al-Sharab, and B. H. Kear, “Flame synthesis of aligned tungsten oxide nanowires”, Appl. Phys. Lett., 88, 243115 (2006).
[176] C. Klinke, J. B. Hannon, L. Gignac, K. Reuter, and P. Avouris, “Tungsten oxide nanowire growth by chemically induced strain”, J. Phys. Chem., 109, 17787 (2005).
[177] M. M. Wilson, S. A. Saveliev, W. C. Jimenez, and G. Salkar, “Flame synthesis of hybrid nanowires with carbon shells and tungsten-oxide cores”, Carbon, 48, 4510 (2010).
[178] S. Nakamura, and G. Fasol, “The Blue Laser Diode”, 1997, p. 230
[179] J. Wang, P. S. Lee, and J. Ma, “Synthesis, growth mechanism and room-temperature blue luminescence emission of uniform WO3 nanosheets with W as starting material”, J. Cryst. Growth., 311, 316 (2009).
[180] T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities”, Science, 285, 1905 (1999).
[181] M. A. Reshchikov, P. Visconti, and H. Morkoç, “Blue photoluminescence activated by surface states in GaN grown by molecular beam epitaxy”, Appl. Phys. Lett., 78, 177 (2001).
[182] M. Niederberger, M. H. Bartl, and G. D. Stucky, “Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality”J. Am. Chem. Soc., 124, 13642 (2002).
[183] M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H.W. Liu, D. X. Shi, B. S. Zou, and H. J. Gao, “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films”, Appl. Phys. Lett., 86, 141901 (2005).
[184] A. Karuppasamy, and A. Subrahmanyam, “Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering”, J. Appl. Phys., 101, 113522 (2007).
[185] P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong, and J. G. Lu, “ZnO nanowires synthesized by vapor trapping CVD method”, Chem. Mater., 24, 5133 (2004).
[186] Q. G. Fu, H. J. Li, X. H. Shi, K. Z. Li, J. Wei, and Z. B. Hu, “Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst”, Mater. Chem. Phys., 100, 108 (2006).
[187] J.H. Yen, I.C. Leu, M.T. Wu, C.C. Lin, and M.H. Hon, “Effect of nanowire catalyst for carbon nanotubes growth by ICP-CVD”, Diam. Relat. Mater., 14, 841 (2005).
[188] X. L. Li, J. F. Liu, and Y. D. Li, “Large-scale synthesis of tungsten oxide nanowires with high aspect ratio”, Inorg. Chem., 42, 921 (2003).
[189] M. Boulova, and G. Lucazeau, “Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy”, J. Solid State Chem., 167, 425 (2002).
[190] S. H. Lee. H. M. Cheong, C. E. Tracy, A. Mascarenhas, D. K. Benson, and S. K. Deb, “Raman spectroscopic studies of electrochromic a-WO3”, Electrochim. Acta., 44, 3111 (1999).
[191] M. Oring, “The Materials Science of Thin Films”, Academic, Boston, 1992.
[192] Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater., 13, 9 (2003).
[193] J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, and Z. L. Wang, “Three-dimensional tungsten oxide nanowire networks”, Adv. Mater., 17, 2107 (2005).
[194] Y. B. Li, Y. Bando, and D. Golberg, “Quasi-aligned single-crystalline WO2.72 nanotubes and nanowires”, Adv. Mater., 15, 1294 (2003).
[195] B. Cao, J. Chen, X. Tang, and W. Zhou, “Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection”, J. Mater. Chem., 19, 2323 (2009).
[196] J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. D. Xu, R. Yang, and Z. L. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays”, J. Appl. Phys., 87, 223108 (2005).
[197] K. Hong, M. Xie, R. Hu, and H. Wu, “Diameter control of tungsten oxide nanowires as grown by thermal evaporation”, Nanotechnology, 19, 085604 (2008).
[198] K. Hong, M. Xie, R. Hu, and H. Wu, “Synthesizing tungsten oxide nanowires by a thermal evaporation method”, Appl. Phys. Lett., 90, 173121 (2007).
[199] C. Ye, X. Fang, Y. Hao, X. Teng, and L. Zhang, “Zinc oxide nanostructures: morphology derivation and evolution”, J. Phys. Chem. B, 109, 19758 (2005).
[200] S. K. Deb, “Optical and photoelectric properties and colour centres in thin films of tungsten oxide”, Philos., Mag., 27, 801 (1973).
[201] L. G. Teoh, J. Shieh, W. H. Lai, I. M. Hung, and M. H. Hon, “Structure and optical properties of mesoporous tungsten oxide”, J. Alloy. Compd., 396, 251 (2005).
[202] T. He, Y. Ma, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang, and J. Yao, “Photochromism of WO3 colloids combined with TiO2 nanoparticles” J. Phys. Chem. B, 106, 12670 (2002).
[203] X. Li, G. Zhang, F. Cheng, B. Guo, and J. Chen, “Synthesis, Characterization, and Gas-Sensor Application of WO3 Nanocuboids”, J. Electrochem. Soc., 153, H133 (2006).
[204] W. Smith, Z. Y. Zhang, and Y. P. Zhao, “Structural and optical characterization of WO3 nanorods/films prepared by oblique angle deposition”, J. Vac. Sci. Technol. B, 25, 1875 (2007).
[205] M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou, and H. J. Gao, “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films”, Appl. Phys. Lett., 86, 141901 (2005).
[206] C. Paracchini, and G. Schianchi, “Luminescence of WO3”, Phys. Status Solidi A, 72, K129 (1982)
[207] M. Niederberger, M. H. Bartl, and G. D. Stucky, “Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nanoaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality”, J. Am. Chem. Soc., 124, 13642 (2002).
[208] Y. H. Li, Y. M. Zhao, R. Z. Ma, Y. Q. Zhu, N. Fisher, Y. Z. Jin, and X. P. Zhange, “ Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes”, J. Phys. Chem. B, 110, 18191 (2006).
[209] Y. M. Zhao, W. B. Hu, Y. D. Xia, E. F. Smith, Y. Q. Zhu, C. W. Dunnill, and D. H. Gregory, “Preparation and characterization of tungsten oxynitride nanowires”, J. Mater. Chem., 17, 4436 (2007).
[210] D. J. Kim, and S. I. Pyun, “Hydrogen transport through rf-magnetron sputtered amorphous WO3 film with three kinds of hydrogen injection sites”, Solid State Ionics, 99, 185 (1997).
[211] K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R. J. Xie, and T. Suehiro, “Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor”, Opt. Lett., 29, 2001 (2004).