研究生: |
王通溫 Wang, Tong-Wen |
---|---|
論文名稱: |
以有機金屬化學氣相磊晶法研製Ⅲ-Ⅴ族氮化物半導體材料特性與光電元件之研究 Study of III-Nitride Properties and Characteristics of Light-Emitting Diodes Using MOCVD |
指導教授: |
吳孟奇
Wu, Meng-Chyi 陳乃權 Chen, Nie-Chuan |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 150 |
中文關鍵詞: | 氮化鎵 、氮化鋁鎵 、矽基板 、發光二極體 、穿透式電子顯微鏡 |
外文關鍵詞: | GaN, AlGaN, Si wafer, Light-emitting diode, TEM |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主旨是以有機金屬氣相沈積法所成長之高品質氮化鋁鎵厚膜為主,並利用氮化銦鎵/氮化鎵形成之多重量子井發光二極體光電特性加以分析;此外,論文亦探討氮化鎵材料中摻雜鎂或矽之薄膜沈積於不同層數之氮化鋁/氮化鎵緩衝層於矽基板上並分析其光電與材料相關特性。
高品質之氮化鋁鎵是白光光源重要的組成材料之一,但由於氮化物基板之一為藍寶石基板技術最為成熟,因此成為侷限住高品質氮化物主要的瓶頸,特別在於厚膜的含鋁氮化物材料中。當鋁含量增加時其臨界厚度隨之減少,伴隨著超過臨界厚度即造成薄膜的差排產生,在元件的製程上產生極大的問題,為改善此一問題帶來的影響,本論文利用氮化鎵的兩階段成長法,成功的將氮化鋁鎵材料之臨界厚度提昇且不破裂之薄膜,提供一個有效的白光光源緩衝層成長方式,並可在一般以氮化鎵材料吸光問題上獲得改善的方法。
為瞭解氮化鋁鎵薄膜品質良窳,並比較氮化鎵孕核層、氮化鋁孕核層、高溫氮化鎵緩衝層、低溫氮化鋁應力緩衝層等結構對氮化鋁鎵材料的影響,論文中利用紫光發光二極體沈積在所設計結構上來驗證,在材料品質驗證上主要以雙晶繞射X-Ray量測不同反射面,例如對稱面(0002), (0004), (0006),以及非對稱面( ) 及( )等平面之半高寬,並比較出所設計之樣品中最佳成長條件與結構,其中以氮化鋁鎵成長於氮化鎵孕核層之品質最好,另外由光激致光得到多層量子井中在不同成長溫度下具有不同銦含量組成與二次離子質譜分析材料的縱深具相同的結果,其次利用陰極致光觀察所設計之結構缺陷密度的比較,並且由穿透式電子顯微鏡的觀察輔助說明了相關結構缺陷上的不同。
在紫光二極體方面,利用變溫電流-電壓量測粹取出二極體之理想因子與串聯電阻等參數,接著利用電容-電壓量測粹取出量子井中相關載子分佈及量子井寬度,在室溫變電流電激致光量測中粹取出二極體的波長藍移特性來自於量子井中壓電效應,而變溫電激致光量測觀察到的紅移是來自於焦爾熱效應。
此外,氮化鎵成長於矽基板亦是本論文的研究重點,矽基板與氮化鎵晶格差異約有-16%,aSi(111)=0.3840 nm及aGaN=0.3189 nm的差異造成氮化鎵需承受來自於矽基板的拉應力,此外在此異質接面上不同的熱膨脹係數(GaN = 5.59x10-6 K-1, Si = 2.61x10-6K-1)造成磊晶層容易破裂,氮化鋁是最佳的應力緩衝層的選擇之一,雖可降低裂紋得到較佳品質的氮化鎵,但距離商業化仍需要克服前述的兩個問題,因此應力在此系統中亟待解決,本論文設計以不同對數的氮化鎵/氮化鋁來觀察結構應力變化情形,以釐清低溫緩衝層如何釋放氮化鎵與矽基板間的應力。
首先由雙晶繞射X-Ray對稱面(0002), (0004), (0006),以及非對稱面( ) 及( )等反射面來檢驗氮化鎵分別摻雜鎂及矽原子之磊晶層,成長於不同對數的緩衝層上之磊晶品質變化,並藉由寬角度的繞射粹取出氮化鎵晶格變化,進而分析隨氮化鎵/氮化鋁對數的增加其磊晶成長方向上的晶格明顯增加,由掃瞄式電子顯微鏡及穿透式電子顯微鏡觀察所成長的樣品中氮化鎵/氮化鋁經由緩衝層可以降低穿透式差排的形成,樣品經由室溫及變溫光激致光觀察發現隨著氮化鎵/氮化鋁對數變化使表面的氮化鎵晶格常數變化使能隙受到雙軸壓力的影響而產生了能帶的變化,此外經由室溫下拉曼量測亦發現隨氮化鎵/氮化鋁對數增加應力明顯變緩的趨勢,而根據上述的觀察應力及晶格常數的變化,對未來發展高亮度發光二極體運用在矽基板上一個有力的參考。
This dissertation discusses on a thick and crack-free AlGaN film that is deposited on a sapphire substrate by using metal-organic chemical vapor deposition (MOCVD) technology. A violet LED is used that InGaN/GaN multiple quantum wells (MQWs) are deposited on this AlGaN template. The properties of the violet LED are investigated on the basis of material properties and by carrying out measurements such as electrical and optical measurements. Another object, the GaN:Si and GaN:Mg films grown on different pairs, is studied. In addition, the properties of the GaN/AlN buffer layer are presented in this paper.
High-quality AlGaN is fabricated on deep ultraviolet (DUV) materials for general illuminance. However, a nitride-based material is usually used with sapphire as the substrate which lack high quality nitride films cause by large lattice mismatch generates high density of dislocation from interface in this system. Especially, an AlN film as nucleation layer (NL) deposited on sapphire following GaN film usually contents dislocation density as high as order to 108~1010 cm-3. Consider, for example, an AlGaN film on GaN template whole Al content increases with decreasing ternary film thickness. The thick Al0.1Ga0.9N film grown on the sapphire substrate may generate a crack when the thickness of the film is greater than 0.1 □m. Such a crack in the film will degrade the device performance. For solving this problem, we investigate AlGaN grown directly on GaN nucleation layer (NL) by using a two-step growth method. A thick and crack free of AlGaN film whose exceeds 1.7 □m is obtained. By using this method, we introduced an effective buffer for growing the white LEDs. Furthermore, the high absorption of GaN at 365 nm can be suppressed by the thick AlGaN buffer.
In order to investigate the quality of the AlGaN film, we compare the GaN NL, AlN NL, and HT-GaN templates, and insert an LT-AlN film for the growth of a thick AlGaN film on sapphire. The crystalline quality of AlGaN templates and device characteristics of violet LEDs fabricated from the AlGaN templates are investigated. XRD patterns of GaN (0002), (0004), and (0006), and of asymmetrical GaN (10-15) are used for studying the violet LEDs grown on the NL and templates and for indentifying the crystallite quality. The photo-luminescence indicated MQWs at different growth temperatures with different Indium content. With respect to the dislocation density, the images of cathode- luminescence (CL) showed that AlGaN on a GaN NL had a low dislocation density. Finally, high-resolution transmission electron microscopy (HR-TEM) showed that the thick AlGaN film with a GaN NL had better crystallite quality.
In the case of the devices used of violet LEDs measurements, the ideal factor and series resistance of the diodes are estimated on the basis of the temperature dependence of the current-voltage measurement. In order to design MQWs, the capacitance-voltage (C-V) characteristics of all LED structures were measured by using an Agilent 4294A precision impedance analyzer at 100 kHz. Knowledge of the C-V characteristics in the zero-bias depletion region can be of further assistance in the estimation of the doping concentration of barrier and the thickness of the undepleted p-GaN layer. This in turn would lead to the optimization of the thickness of the MQWs and p-GaN layer. Furthermore, power dependent electroluminescence is examined for the LEDs in order to observe emission peaks that exhibit a little blue shift because of the screening effect of the piezoelectric field in the QWs. The temperature dependence of electroluminescence indicated a redshift caused by the Joule heating.
GaN can be grown on foreign substrates, for example, GaAs and Si. But, the primary considertion how to growth a lattice mismatch material up to 16 % between GaN and Si substrate, is the requirement for the growth of a high quality film. In general, the lattice between aSi(111) = 0.3840 nm and aGaN = 0.3189 nm is under strongly tensile strain in the case of a GaN film deposited on a Si substrate. In addition, cracks are formed when the growth temperature cools down to the room temperature when the thermal expansion coefficient for GaN = 5.59 × 10–6 K–1, and that of Si = 2.61 × 10–6K–1. AlN is the most commonly used material to avoid such cracks. This method can efficiently suppress cracks and facilitate the growth of a high quality GaN film. However, for commercial application, the first requirement is how to improve the difference in the internal quantum efficient (IQE) of GaN base LEDs on silicon substrate than on sapphire substrate. However, the GaN/AlN relaxation mechanism remains unknown. We investigated GaN:Si and GaN:Mg grown on multiple pair (MP) GaN/AlN buffer layers and verified the residual strain at the top of the GaN with a Si or Mg dopant. By using this method, we examined the strain relaxation in a GaN film on a Si system.
First, two sets of samples are investigated by using high resolution X-ray diffraction patterns of the □/2θ scans of the symmetrical GaN (0002), (0004), and (0006), and the asymmetrical (10-12), and (10-15) planes. The increase in the number of pairs led to an increase in AlN lattice c more than the GaN. The cross sectional of SEM and TEM images also indicated that an increase in the MPs resulted in a decrease in the top GaN dislocation density. Futher, the energy band gap toward the narrow band gap due to the biaxial strain increased because of the temperature dependence of the photoluminescence peak and the increase in the MPs. The Raman measurement indicates that the GaN strain decreases with an increase in the MPs, which in turn induces GaN under a strain relaxation.
[1] I. Akasaki, “Key inventions in the history of nitride-based blue LED and LD”, J. Crys. Growth 300, 2–10 (2007)
[2] J. Wu W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, Hai Lu William J. Schaff, A. Barcz and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN”, Appl. Phys. Lett. 84, 2805 (2004)
[3] O Ambacher, “Growth and applications of Group III-nitrides”, J. Phys. D: Appl. Phys. 31 2653–2710 (1998)
[4] Y. Taniyasu, M. Kasu, T. Makimoto, “Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0 0 0 1) substrate”, J. Crys. Growth 298, 310–315 (2007)
[5] Y. Taniyasu, M. Kasu, T. Makimoto, “An aluminium nitride light- emitting diode with a wavelength of 210 nanometres”, Nature 441, 325 (2006)
[6] A. E. Romanov and J. S. Speck, “Stress relaxation in mismatched layers due to threading dislocation inclination”, Appl. Phys. Lett. 83, 2568 (2003)
[7] P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Si doping effect on strain reduction in compressively strained Al0.49Ga0.51N thin films”, Appl. Phys. Lett. 83, 674 (2003)
[8] J. A. Floro, D. M. Follstaedt, P. Provencio, S. J. Hearne, and S. R. Lee, “Misfit dislocation formation in the AlGaN/GaN heterointerface” J. Appl. Phys. 96, 7087 (2004).
[9] K. Ito, K. Hiramatsu, H. Amano, and I. Akasaki, “Preparation of AlxGa1-xN GaN heterostructure by MOVPE” J. Cryst. Growth 104, 533 (1990).
[10] S. Srinivasan, L. Geng, R. Liu, F. A. Ponce, Y. Narukawa, and S. Tanaka, “Slip systems and misfit dislocations in InGaN epilayers” Appl. Phys. Lett. 83, 5187 (2003).
[11] S. J. Hearne, J. Han, S. R. Lee, J. A. Floro, D. M. Follstaedt, E. Chason, and I. S. T. Tsong, “Brittle-ductile relaxation kinetics of strained AlGaN/GaN heterostructures” Appl. Phys. Lett. 76, 1534 (2000)
[12] A. Dadgar, C. Hums, A. Diez, F. Schulze, J. Bläsing, and A. Krost “Epitaxy of GaN LEDs on large substrates: Si or sapphire?”, Proc. of SPIE 6355 63550R
[13] S. Hearne, E. Chason, J. Han, J. A. Floro, J. Figiel, J. Hunter, H. Amano, and I. S. T. Tsong, “Stress evolution during metalorganic chemical vapor deposition of GaN” Appl. Phys. Lett. 74, 356 (1999)
[14] S. Raghavan, J. Acord, and J. M. Redwing, “In situ observation of coalescence-related tensile stresses during metalorganic chemical vapor deposition of GaN on sapphire” Appl. Phys. Lett. 86, 261907 (2005)
[15] B. S. Zhang, M. Wu, J. P. Liu, J. Chen, J. J. Zhu, X. M. Shen, G. Feng, D.G. Zhao, Y.T. Wang, H. Yang, and A.R. Boyd, “Reduction of tensile stress in GaN grown on Si(1 1 1) by insertinga low- temperature AlN interlayer”, J. Cryst. Growth 270, 316 (2004).
[16] R. P. Parikh, Raymond A. Adomaitis, “An overview of gallium nitride growth chemistry and its effect on reactor design Application to a planetary radial-flow CVD system”, J. Cryst. Growth 266, 259 (2006).
[17] C. C. Kim, J. H. Je, M. S. Yi, D. Y. Noh, P. Ruterana, “In-plane tensile-strained interfacial structure in a GaN nucleation layeron sapphire (0001)”, J. Appl. Phys. 90, 2191 (2001).
[18] D. D. Koleske, M. E. Coltrin, A. A. Allerman, K. C. Cross, C. C. Mitchell, and J. J. Figiel, “In situ measurements of GaN nucleation layer decompostion”, Appl. Phys. Lett. 82, 1170 (2003)
[19] M. S. Yi and D. Y. Noh, “Strain relaxation of GaN nucleation layers during rapid thermal annealing”, Appl. Phys. Lett. 78, 2443 (2001)
[20] M. S. Yi, H. H. Lee, D. J. Kim, S. J. Park, D. Y. Noh, C. C. Kim and J. H. Je, “Effects of growth temperature on GaN nucleation layers”, Appl. Phys. Lett. 75, 2181 (1999)
[21] A. Munkholm, C. Thompson, C. M. Foster, J. A. Eastman, O. Auciello, G. B. Stephenson, P. Fini, S. P. DenBaars and J. S. Speck, “Determination of the cubic to hexagonal fraction in GaN nucleation layers using grazing incidence x-ray scattering”, Appl. Phys. Lett. 72, 2972 (2003)
[22] X. H. Wu, D. Kapolnek, E. J. Tarsa, B. Heying, S. Keller, B. P. Keller, and U. K. Mishra, S. P. DenBaars, J. S. Speck, “Nucleation layer evolution in metal-organic chemical vapor deposition grown GaN”, Appl. Phys. Lett. 68, 1371 (1996)
[23] J. Narayan, P. Pant, A. Chugh, H. Choi and J. C. C. Fan, “Characteristics of nucleation layer and epitaxy in GaN/sapphire heterostructures”, J. Appl. Phys. 99, 054313 (2006).
[24] M. E. Twigg, R. L. Henry, A. E. Wickenden, D. D. Koleske, and J. C. Culbertson, “Nucleation layer microstructure, grain size, and electrical properties in GaN grown on a-plane sapphire”, Appl. Phys. Lett. 75, 686 (1999)
[25] D. D. Koleske, R. L. Henry, M. E. Twigg, J. C. Culbertson, S. C. Binari, A. E. Wickenden, and M. Fatemi, “Influence of AlN nucleation layer temperature on GaN electronic properties grown on SiC”, Appl. Phys. Lett. 80, 4372 (2002)
[26] K. Lorenz, M. Gonsalves, Wook Kim, V. Narayanan, and S. Mahajan, “Comparative study of GaN and AlN nucleation layers and their role in growth of GaN on sapphire by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 77, 3391 (2000)
[27] H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett. 48, 353 (1986)
[28] F. Yan, M. Tsukihara, A. Nakamura, T. Yadani, T. Fukumoto, Y. Naoi and S. Sakai, “Surface Smoothing Mechanism of AlN Film by Initially Alternating Supply of Ammonia”, J. J. Appl. Phys. 43, L1075 (2004).
[29] Y. A. Xi, K. X. Chen, F. Mont, J. K. Kim, E. F. Schubert, C. Wetzel, W. Liu, X. Li, and J. A. Smart, “Optimization of High-Quality AlN Epitaxially Grown on (0001) Sapphire by Metal-Organic Vapor- Phase Epitaxy”, Journal of ELECTRONIC MATERIALS, 36, 533 (2007)
[30] X. H. Wu, P. Fini, S. Keller, E. J. Tarsa, B. Heying, U. K. Mishra, S. P. DenBaars and J. S. Speck, “Morphological and Structural Transitions in GaN Films Grown on Sapphire by Metal-Organic Chemical Vapor Deposition”, J. J. Appl. Phys. 35, L1648 (1996).
[31] T. M. Katona, P. Cantu, S. Keller, Y. Wu, J. S. Speck, S. P. DenBaars, “Maskless lateral epitaxial overgrowth of high- aluminum-content AlxGa1-xN” Appl. Phys. Lett. 84, 5025 (2004).
[32] J. P. Zhang, X. Hu, Yu. Bilenko, J. Deng, A. Lunev, M. S. Shur, R. Gaska, M. Shatalov, J. W. Yang, and M. A. Khan, “AlGaN-based 280 nm light-emitting diodes with continuous-wave power exceeding 1 mW at 25 mA”, Appl. Phys. Lett. 85, 5532 (2004).
[33] Y. Kida, T. Shibata, H. Naoi, H. Miyake, K. Hiramatsu, and M. Tanaka, “Growth of Crack-Free and High-Quality AlGaN with High Al Content Using Epitaxial AlN (0001) Films on Sapphire”, Phys. Stat. Sol. (a) 194, 498 (2002).
[34] T. Tut, S. Butun, B. Butun, M. Gokkavas, H. B. Yu, and E. Ozbay, “Solar blind AlGaN based avalanche photodiodes”, Appl. Phys. Lett. 87, 223507 (2005).
[35] H. Amano, M. Iwaya, N. Hayashi, T. Kashima, S. Nitta, C. Wetzel, and I. Akasaki, “Control of Dislocations and Stress in AlGaN on Sapphire Using a Low Temperature Interlayer”, Phys. Stat. Sol. (b) 216, 683 (1999).
[36] M. Miyoshi, T. Egawa, H. Ishikawa, K. I. Asai, T. Shibata, M. Tanaka, and O. Oda, “Nanostructural characterization and two-dimensional electron gas properties in high mobility AlGaN/AlN/GaN heterostructures grown on epitaxial AlN sapphire templates”, J. Appl. Phys. 98, 063713 (2005).
[37] C. F. Shih, N. C. Chen, S. Y. Lin, and K. S. Liu, “AlGaN films grown on (0001) sapphire by a two-step method”, Appl. Phys. Lett. 86, 211103 (2005).
[38] H. M. Wang, J. P. Zhang, C. Q. Chen, Q. Fareed, J. W. Yang, and M. A. Khan, “AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire”, Appl. Phys. Lett. 81, 604 (2002).
[39] S. Einfeldt, V. Kirchner, H. Heinke, M. Dießelberg, S. Figge, K. Vogeler, and D. Hommel, “Strain relaxation in AlGaN under tensile plane stress”, J. Appl. Phys. 88, 7029 (2000).
[40] Q. Fareed, V. Adivarahan, M. Gaevski, T. Katona, J. Mei, F. A. Ponce, and A. Khan, “Metal–Organic Hydride Vapor Phase Epitaxy of AlxGa1-xN Films over Sapphire”, J. J. Appl. Phys. 46, L752 (2007).
[41] J. M. Bethoux, P. Vennegues, F. Natali, E. Feltin, O. Tottereau, G. Nataf, P. De Mierry, and F. Semond, “Growth of high quality crack- free AlGaN films on GaN templates using plastic relaxation through buried cracks”, J. Appl. Phys. 94, 6499 (2003)
[42] A. Bell, R. Liu, U. K. Parasuraman, F. A. Ponce, S. Kamiyama, H. Amano, and I. Akasaki, “Spatial variation of luminescence from AlGaN grown by facet controlled epitaxial lateral overgrowth”, Appl. Phys. Lett. 85, 3417 (2004).
[43] B. Beaumont, V. Bousquet, P. VenneÂgueÁs, M. Vaille, A. BouilleÂ, P. Gibart, S. Dassonneville, A. Amokrane, and B. Sieber, “A Two-Step Method for Epitaxial Lateral Overgrowth of GaN”, phys. stat. sol. (a) 176, 567 (1999)
[44] M. Gao, Y. Lin, S. T. Bradley, S. A. Ringel, J. Hwang and W. J. Schaff, L. J. Brillson, “Spontaneous compositional superlattice and band-gap reduction in Si-doped AlxGa1–xN epilayers”, Appl. Phys. Lett. 87, 191906 (2005).
[45] J. P. Zhang, H. M. Wang, M. E. Gaevski, C. Q. Chen, Q. Fareed, J. W. Yang, G. Simin, and M. Asif Khan, “Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management”, Appl. Phys. Lett. 80, 3542 (2002).
[46] C. Q. Chen, J. P. Zhang, M. E. Gaevski, H. M. Wang, W. H. Sun, R. S. Q. Fareed, J. W. Yang, and M. Asif Khan, “AlGaN layers grown on GaN using strain-relief interlayers”, Appl. Phys. Lett. 81, 4961 (2002).
[47] T. W. Wang, N. C. Chen, W. C. Lien, M. C. Wu and C. F. Shih “Effects of the GaN and AlN nucleation layers on the crack-free AlGaN templates” J. Appl. Phys. 104, 063104 (2008)
[48] P. Vennegues and H. Lahreche, “Phase separation in metal organic vapor-phase epitaxy AlxGa1-xN films deposited on 6H–SiC”, Appl. Phys. Lett. 77, 4310 (2000).
[49] S. Kamiyama, M. Iwaya, N. Hayashi, T. Takeuchi, H. Amno, I. Akasaki, S. Watanabe, Y. Kaneko, and N. Yamada, “Low temperature deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure”, J. Cryst. Growth 223, 83 (2001).
[50] S. Guha and N. A. Bojarczuk, “Multicolored light emitters on silicon substrates”, Appl. Phys. Lett. 73, 1487 (1998).
[51] E. Calleja, M. A. Sanchez-Garcia, D. Basak, F. J. Sanchez, F. Calle, P. Youinou, E. Munoz, J. J. Serrano, J. M. Blanco, C. Villar, T. Laine, J. Oila, K. Saarinen, P. Hautojarvi, C. H. Molloy, D. J. Somerford, and I. Harrison, “Effect of Ga/Si interdiffusion on optical and transport properties of GaN layers grown on Si.111. by molecular-beam epitaxy”, Phys. Rev. B 50, 8067 (1994).
[52] E. Calleja, M. A. Sanchez-Garcia, F. J. Sanchez, F. Calle, F.B. Naranjo, E. Munoz, S. I. Molina, A. M. SaHnchez, F. J. Pacheco, and R. Garcia, “Growth of III-nitrides on Si(111) by molecular beam epitaxy doping, optical, and electrical properties”, J. Cryst. Growth 201/202, 296 (1999).
[53] M. K. Sunkara, S. Sharma, R. Miranda, G. Lian and E. C. Dickey, “Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method”, Appl. Phys. Lett. 79, 1546 (2001).
[54] E. Calleja, M. A. Sanchez-Garcia, E. Monroy, F. J. Sanchez, E. Munoz, A. Sanz-Hervas, C. Villar and M. Aguilar, “Growth kinetics and morphology of high quality AlN grown on Si(111) by plasma- assisted molecular beam epitaxy”, J. Appl. Phys. 82, 4681 (1997).
[55] H. Lahreche, P. VenneHgues, O. Tottereau, M. Laugt, P. Lorenzini, M. Leroux, B. Beaumont, and P. Gibart. “Optimisation of AlN and GaN growth by metalorganic vapour-phase epitaxy (MOVPE) on Si(111)”, J. Cryst. Growth 217, 13 (2000).
[56] Y. Lu, G. W. Cong, X. L. Liu, D. C. Lu, Q. S. Zhu, X. H. Wang, J. J. Wu, and Z. G. Wang, “Growth of crack-free GaN films on Si(111) substrate by using Al-rich AlN buffer layer”, J. Appl. Phys. 96, 4982 (2004).
[57] H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U. K. Mishra, J. S. Speck, S. P. DenBaars, and J. A. Freitas, “Metal organic chemical vapor deposition of GaN on Si (111): Stress control and application to field-effect transistors”, J. Appl. Phys. 89, 7846 (2001).
[58] H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultra violet light-emitting diodes”, J. Appl. Phys. 97, 091101 (2005).
[59] S. Nakamura, “First III-V-nitride-based violet laser diodes”, J. Crystal Growth 170 11 (1997).
[60] T. Tut, S. Butun, B. Butun, M. Gokkavas, H.B. Yu, E. Ozbay, “Solar blind AlGaN based avalanche photodiodes”, Appl. Phys. Lett. 87 223507 (2005).
[61] H. Amano, M. Iwaya, N. Hayashi, T. Kashima, S. Nitta, C. Wetzel, I. Akasaki, “Control of Dislocations and Stress in AlGaN on Sapphire Using a Low Temperature Interlayer”, Phys. Stat. Sol. (b) 216 683 (1999).
[62] M. Miyoshi, T. Egawa, H. Ishikawa, K.I. Asai, T. Shibata, M. Tanaka, O. Oda, “Nanostructural characterization and two- dimensional electron-gas properties in high-mobility AlGaN/ AlN/GaN heterostructures grown on epitaxial AlN/sapphire templates”, J. Appl. Phys. 98 063713 (2005).
[63] A. Mills, “Nitride metamorphosis — the Boston MRS meeting & more”, III-Vs Review 9 44 (1996).
[64] N. Ikeda, J. Li, H. Takehara, T. Wada, S. Yoshida, “High-performance normally off FET using an AlGaN/GaN heterostructure on Si substrate”, J. Cryst. Growth 275 1091 (2005).
[65] S. Kato, Y. Satoh, H. Sasaki, I. Masayuki, S. Yoshida, “C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE”, J. Cryst. Growth 298 831 (2007).
[66] O. Briot, J. P. Aiexis, M. Tchounkeu, and R. L. Aulombard, “Optimization of the MOVPE growth of GaN on sapphire”, Mater. Sci. Eng. B43, 147 (1997).
[67] D. D. Koleske, A. E. Wickenden, R. L. Henry, J. C. Culbertson, M. E. Twigg, “GaN decomposition in H2 and N2 at MOVPE temperatures and pressures”, J. Cryst. Growth 223 466 (2001).
[68] A. Usui, , H. Sunakawa, A. Sakai, A.A. Yamaguchi, “Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. 36 L899 (1997).
[69] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, A. V. Markov, E. B. Yakimov, P. S. Vergeles, I. H. Lee, C. R. Lee, S. J. Pearton, “Effects of laterally overgrown n-GaN thickness on defect and deep level concentrations”, J. Vac. Sci. Technol. B26 990 (2008).
[70] H. Tauchiya, F. Hasegawa, H. Okumura, S. Yoshida, “Comparison of Hydride Vapor Phase Epitaxy of GaN Layers on Cubic GaN/(100)GaAs and Hexagonal GaN/(111)GaAs Substrates”, Jpn. J. Appl. Phys. 33, 6448 (1994).
[71] T. Detchprohm, K. Hiramatsu, N. Sawaki, I. Akasaki, “Metalorganic vapor phase epitaxy growth and characteristics of Mg-doped GaN using GaN substrates”, J. Cryst. Growth 145, 192 (1994).
[72] H. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, “The role of dislocation scattering in n-type GaN films”, Appl. Phys. Lett. 73, 821 (1998).
[73] T. Yang, K. Uchida, T. Mishima, J. Kasai, and J. Gotoh, “Control of Initial Nucleation by Reducing the V/III Ratio during the Early Stages of GaN Growth”, Phys. Stat. Sol. (a) 180, 45 (2000).
[74] C. Q. Chen, J. P. Zhang, M. E. Gaevski, H. M. Wang, W. H. Sun, R. S. Q. Fareed, J. W. Yang, and M. Asif Khan, “AlGaN layers grown on GaN using strain-relief interlayers”, Appl. Phys. Lett. 81 4961 (2002).
[75] Y. Kida, T. Shibata, H. Naoi, H. Miyake, K. Hiramatsu, and M. Tanaka, “Growth of Crack-Free and High-Quality AlGaN with High Al Content Using Epitaxial AlN (0001) Films on Sapphire”, Phys. Stat. Sol. (a) 194, 498 (2002).
[76] Y. Kida, T. Shibata, H. Miyake and K. Hiramatau, “Metalorganic Vapor Phase Epitaxy Growth and Study of Stress in AlGaN Using Epitaxial AlN as Underlying Layer”, Jpn. J. Appl. Phys. 42, L572 (2003).
[77] J. C. Zhang, D. G. Zhao, J. F. Wang, Y. T. Wang, J. Chen, J. P. Liu, and H. Yang, “The influence of AlN buffer layer thickness on the properties of GaN epilayer”, J. Cryst. Growth 268, 24 (2004).
[78] S. Raghavan and J. M. Redwing, “Intrinsic stresses in AlN layers grown by metal organic chemical vapor deposition on (0001) sapphire and (111) Si substrates”, J. Appl. Phys. 96, 2995 (2004).
[79] T. Metzger, R. HoÈpler, E. Born, O. Ambacher, M. Stutzmann, R. StoÈmmer, M. Schuster, H. GoÈbel, S. Christiansen, M. Albrecht, and H. P. Strunk, “Defect structure of epitaxial GaN flms determined by transmission electron microscopy and triple-axis X-ray diffractometry”, Phil. Mag. A 77, 1013 (1998).
[80] R. Chierchia, T. Bottcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction”, J. Appl. Phys. 93, 8918 (2003).
[81] R. Chierchia, T. Bottcher, S. Figge, M. Diesselberg, H. Heinke, and D. Hommel, “Mosaicity of GaN Epitaxial Layers: Simulation and Experiment”, Phys. Stat. Sol. (b) 228, 403 (2001).
[82] X. H. Wu, L. M. Brown, D. Kapolnek, S. Keller, B. Keller, S. P. DenBaars, and J. S. Speck, “Defect structure of metal-organic chemical vapor deposition-grown epitaxial (0001) GaN/Al2O3”, J. Appl. Phys. 80, 3228 (1996).
[83] X. H. Wu, P. Fini, E. J. Tarsa, B. Heying, S. Keller, U.K. Mishra, S.P. DenBaars, and J.S. Speck, “Dislocation generation in GaN heteroepitaxy”, J. Cryst. Growth 189, 231 (1998).
[84] H. Sato, T. Sugahara, Y. Naoi, and S. Sakai, “Compositional Inhomogeneity of InGaN Grown on Sapphire and Bulk GaN Substrates by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 37 2013 (1998).
[85] S. M. Myers, A. F. Wright, M. Sanati, S. K. Estreicher, “Theoretical properties of the N vacancy in p-type GaN(Mg,H) at elevated temperatures”, J. Appl. Phys. 99 113506 (2006).
[86] T. Kachi, K. Tomita, K. Itoh, H. Tadano, “A new buffer layer for high quality GaN growth by metalorganic vapor phase epitaxy”, Appl. Phys. Lett. 72 704 (1998).
[87] A. P. Kovarsky, V. S. Strykanov, “In-depth Analysis of the Impurities in GaN”, MRS Internet J. Nitride Semicond. Res. 1 (1996) 34.
[88] L. W. Ji, Y. K. Su, S. J. Chang, C. S. Chang, L. W. Wu, W. C. Lai, X. L. Du, and H. Chen, “InGaN/GaN multi-quantum dot light- emitting diodes”, J. Cryst. Growth 263, 114 (2004).
[89] E. Fred Schubert, Light-Emitting Diodes, 2nd Edi., Chap. 6.2, pp. 103-104, Cambridge University Press, Cambridge, 2006.
[90] S. C. Jain, H. E. Maes, K. Pinardi, and I. De Wolf “Stresses and strains in lattice-mismatched stripes, quantum wires, quantum dots, and substrates in Si technology”, J. Appl. Phys. 79, 8145 (1996).
[91] J. M. Bethoux and P. Vennéguès, “Ductile relaxation in cracked metal-organic chemical-vapor-deposition grown AlGaN films on GaN”, J. Appl. Phys. 97, 123504 (2005).
[92] A. Bourret, C. Adelmann, B. Daudin, J. L. Rouviere, G. Feuillet, and G. Mula1, “Strain relaxation in (0001) AlN/GaN heterostructures”, Phys. Rev. B 63, 245307 (2001).
[93] F. Widmann, J. Simon, B. Daudin, G. Feuillet, J. L. Rouviere, N. T. Pelekanos, and G. Fishman “High Al-content AlGaN/GaN MODFETs for ultrahigh performance”, Phys. Rev. B 58, R15989 (1998)
[94] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides”, Phys. Rev. B 56, R10 024 (1997)
[95] B. Jahnen, M. Albrecht, W. Dorsch, S. Christiansen, H. P. Strunk, D. Hanser, and R. F. Davis, “Pinholes, Dislocations and Strain Relaxation in InGaN”, MRS Internet J. Nitride Semicond. Res. 3, 39 (1998).
[96] S. Srinivasan, L. Geng, R. Liu, F. A. Ponce, Y. Narukawa, and S. Tanaka, “Slip systems and misfit dislocations in InGaN epilayers”, Appl. Phys. Lett. 83, 5187 (2003).
[97] S. J. Hearne, J. Han, S. R. Lee, J. A. Floro, D. M. Follstaedt, E. Chason, and I. S. T. Tsong, “Brittle-ductile relaxation kinetics of strained AlGaN/GaN heterostructures”, Appl. Phys. Lett. 76, 1534 (2000).
[98] J. Q. Qu, J. Li, and G. Y. Zhang, “AlGaN/GaN heterostructure grown by metalorganic vapor phase epitaxy”, J. Cryst. Growth 107 467 (1998).
[99] C. F. Shih, M. Y. Keh, Y. N. Wang, N. C. Chen, C. A. Chang, P. H. Chang, and K. S. Liu, “High-quality and crack-free AlxGa1-xN (x~0.2) grown on sapphire by a two-step growth method”, J. Cryst. Growth 277 44 (2005).
[100] J. E. Northrup and J. Neugebauer “Theory of GaN (1010) and (1120) surfaces”, Phys. Rev. B 53, R10477.
[101] T. W. Wang, N. C. Chen, W. C. Lien, M. C. Wu, and C. F. Shih, “Violet light-emitting diodes grown on crack-free AlGaN templates”, submit to JVST.
[102] D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire”, Appl. Phys. Lett. 67, 1541 (1995).
[103] H. Y. Lin, Y. F. Chen, T. Y. Lin, C. F. Shih, K. S. Liu, N. C. Chen. “Direct evidence of compositional pulling effect in AlxGa1−xN epilayers”, J. Cryst. Growth 290 225 (2006)
[104] X. A. Cao, J. M. Teetsov, M. P. D’Evelyn, D. W. Merfeld, and C. H. Yan, “Electrical characteristics of InGaN/GaN light-emitting diodes grown on GaN and sapphire substrates”, Appl. Phys. Lett. 85, 7 (2004).
[105] N. C. Chen, W. C. Lien, Y. S.Wang, and H. H. Liu, “Capacitance– Voltage and Current–Voltage Measurements of Nitride Light- Emitting Diodes”, IEEE Trans. Electron Devices 54, 3223 (2007).
[106] M. C. Schmidt, K. C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S. P. Denbaars, and J. S. Speck, “High Power and High External Efficiency m-Plane InGaN Light Emitting Diodes”, Jpn. J. Appl. Phys. 46, L126 (2007).
[107] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale”, J. Appl. Phys. 103, 014314 (2008).
[108] J. C. Lin, Y. K. Su, S. J. Chang, W. H. Lan, K. C. Huang, W. R. Chen, Y. C. Cheng, and W. J. Lin, “GaN-based light-emitting diodes prepared on vicinal sapphire substrates”, IET Optoelectron. 1, 23 (2007).
[109] H. W. Shim, E. K. Suh, C. H. Hong, Y. W. Kim, and H. J. Lee, “Effect of well profile on optical and structural properties in InGaN/GaN quantum wells and light emitting diodes”, Phys. Stat. Sol. (a) 200, 62 (2003).
[110] M. C. Johnson, E. D. Bourret-Courchesne, J. Wu, Z. Liliental- Weber, D. N. Zakharov, R. J. Jorgenson, T. B. Ng, D. E. McCready, and J. R. Williams, “Effect of gallium nitride template layer strain on the growth of InxGa1-xN/GaN multiple quantum well light emitting diodes”, J. Appl. Phys. 96, 1381 (2004).
[111] J. Bai, T. Wang, P. J. Parbrook, and A. G. Cullis, “Mechanisms of dislocation reduction in an Al0.98Ga0.02N layer grown using a porous AlN buffer”, Appl. Phys. Lett. 89, 131925 (2006).
[112] A. Dadgar, J. Christen, T. Riemann, S. Richter, J. Blasing, A. Diez, A. Krost, A. Alam and M. Heuken “Bright blue electroluminescence from an InGaN/GaN multiquantum-well diode on Si(111) Impact of an AlGaN/GaN multilayer”, Appl. Phys. Lett. 78, 2211 (2001).
[113] A. Dadgar, M. Poschenrieder, A. Reiher, J. Blasing, J. Christen, A. Krtschil, T. Finger,T. Hempel, A. Diez, and A. Krost, “Reduction of stress at the initial stages of GaN growth on Si”, Appl. Phys. Lett. 82, 28 (2003).
[114] A. Dadgar, M. Poschenrieder, J. Blasing, K. Fehse, A. Diez, and A. Krost, “Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ SixNy masking”, Appl. Phys. Lett. 80, 3670 (2002).
[115] J. Blasing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, “The origin of stress reduction by low-temperature AlN interlayers”, Appl. Phys. Lett. 81, 2722 (2002).
[116] W. Liu, J. J. Zhu, D. S. Jiang, H. Yang and J. F. Wang, “Influence of the AlN interlayer crystal quality on the strain evolution of GaN layer grown on Si(111)”, Appl. Phys. Lett. 90, 011914 (2007).
[117] D. Wang, Y. Hiroyama, M. Tamura, M. Ichikawa and S. Yoshida, “Growth of hexagonal GaN on Si(111) coated with a thin flat SiC buffer layer”, Appl. Phys. Lett. 77, 1846 (2000).
[118] N. P. Kobayashi, J. T. Kobayashi, P. D. Dapkus, W. J. Choi, A. E. Bond, X. Zhang and D. H. Rich, “GaN growth on Si(111) substrate using oxidized AlAs as an intermediate layer”, Appl. Phys. Lett. 71, 3569 (1997)
[119] H. Ishikawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, “GaN growth on Si(111) substrate using oxidized AlAs as an intermediate layer”, Jpn. J. Appl. Phys., 38, L492 (1999).
[120] A. Dadgar, A. Alam, T. Riemann, J. Blasing, A. Diez, M. Poschenrieder, M. Straßburg, J. Christen, and A. Krost, “Crack-Free InGaN/GaN Light Emitters on Si(111)”, Phys. Status Solidi A 188, 155 (2001).
[121] C. H. Chen, C. M. Yeh, J. Hwang, T. L. Tsai, C. H. Chiang, C. S. Chang, and T. P. Chen, “Band gap shift in the GaN/AlN multilayers on the mesh-patterned Si(111)”, Appl. Phys. Lett. 88, 161912 (2006).
[122] N. C. Chen, C. F. Shih, C. A. Chang, A. P. Chiu, S. D. Teng, and K. S. Liu, “High-quality GaN films grown on Si(111) by a reversed Stranski–Krastanov growth mode”, phys. stat. sol. (b) 241, 2698 (2004)
[123] E. Calleja, M. A. Sanchez-Garcia, F. J. Sanchez, F. Calle, F. B. Naranjo, E. Molina, S. I. Molina, A. M. SaHnchez, F. J. Pacheco, R. Garcia, “”, J. Cryst. Growth, 201/202, 296 (1999).
[124] E. Calleja, M. A. Sanchez-Garcia, E. Monroy, F. J. Sanchez, E. Molina A. Sanz-Hervas, C. Villar, and M. Aguilar, “Growth kinetics and morphology of high quality AlN grown on Si(111) by plasma-assisted molecular beam epitaxy”, J. Appl. Phys. 82, 4687 (1997).
[125] H. Lahreche, P. Vennegues, O. Tottereau, M. Laugt, P. Lorenzini, M. Leroux, B. Beaumont, P. Gibart, “Optimisation of AlN and GaN growth by metalorganic vapour-phase epitaxy (MOVPE) on Si(111)”, J. Cryst. Growth, 217 13 (2000).
[126] B. S. Zhang, M. Wu, J. P. Liu, J. Chena, J. J. Zhu, X.M. Shen, G. Feng, D.G. Zhao, Y.T. Wang, H. Yang, A.R. Boyd, “Reduction of tensile stress in GaN grown on Si(1 1 1) by insertinga low temperature AlN interlayer”, J. Cryst. Growth, 270, 316 (2004).
[127] Joint Committee on the Powder Diffraction Standards (JCPDS) Card, No 80-001.
[128] B. Daudin, F. Widmann, G. Feuillet, Y. Samson, M. Arlery, and J. L. Rouviere, “Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN”, Phys. Rev. B 56, R7069 (1997)
[129] C. Adelmann, N. Gogneau, E. Sarigiannidou, J. L. Rouviere, and B. Daudin, “GaN islanding by spontaneous rearrangement of a strained two-dimensional layer on (0001) AlN”, Appl. Phys. Lett. 81, 3064 (2002).
[130] C. Adelmann, J. Brault, D. Jalabert, P. Gentile, H. Mariette, Guido Mula, and B. Daudin “Dynamically stable gallium surface coverages during plasma-assisted molecular-beam epitaxy of (0001) GaN”, J. Appl. Phys. 91, 9638 (2002).
[131] H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, “Analysis of the Defect Structure of Epitaxial GaN”, phys. stat. sol. (a) 176, 391 (1999).
[132] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett. 68, 643 (1996).
[133] L. S. Wang, K. Y. Zang, S. Tripathy, and S. J. Chua, “Effects of periodic delta-doping on the properties of GaN:Si films grown on Si (111) substrates”, Appl. Phys. Lett. 85, 5881 (2004).
[134] X. Weng, S. Raghavan, J. D. Acord, A. Jain, E. C. Dickey, J. M. Redwing, “Evolution of threading dislocations in MOCVD-grown GaN films on (111) Si substrates”, J. Cryst. Growth 300, 217 (2007).
[135] S. Raghavan, X. Weng, E. C. Dickey, and J. M. Redwing, “Effect of AlN interlayers on growth stress in GaN layers deposited on (111) Si”, Appl. Phys. Lett. 87, 142101 (2005).
[136] S. Raghavan, and J. M. Redwing, “Growth stresses and cracking in GaN films on (111) Si grown by metal-organic chemical-vapor deposition I AlN buffer layers”, J. Appl. Phys. 98, 023514 (2005).
[137] S. Raghavan, and J. M. Redwing, “In situ stress measurements during the MOCVD growth of AlN buffer layers on (111) Si substrates”, J. Cryst. Growth 261, 294 (2004).
[138] E B Yakimov, “Electron-beam-induced-current study of defects in GaN; experiments and simulation”, J. Phys. Condens. Matter 14 13069 (2002)