簡易檢索 / 詳目顯示

研究生: 郭文哲
Kuo, Wen-Che
論文名稱: 探討電雙層延伸閘極場效電晶體生醫感測器對微核醣核酸訊號偵測之穩定度及敏感度
Investigation of Electrical Stability and Sensitivity of High Field Modulated Extended Gate FET Biosensors for miRNA Detection
指導教授: 王玉麟
Wang, Yu-Lin
口試委員: 林宗宏
Lin, Zong-Hong
李博仁
Li, Bor-Ran
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 63
中文關鍵詞: 場效電晶體生醫感測器布朗運動
外文關鍵詞: miRNA, FET, biosensor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • miRNA 已被證實在多種癌症以及心血管疾病上是極具潛力的生物標記,具有高敏感度、高特異性的性質。然而,因為 miRNA 在體內極低的濃度使它的檢測方式與發展具有很大的限制。現今常見miRNA檢測方式為使用聚合酶連鎖反應(PCR)放大miRNA濃度來做檢測,這樣的方式具又費時且無法直接檢測原始濃度的缺點。因此,本研究擬設計一場效電晶體(FET)生物感測器來檢測 miRNA,透過FET放大訊號的特性替代PCR反應。
    為了設計出優良的miRNA電晶體(FET)生物感測器,本研究使用不同鍍金方式、不同溫度以及不同水溶液觀察電訊號的變化,發現水中離子會依循布朗運動的機制,而降低布朗運動則能有效提高電訊號的穩定程度。透過不同濃度的DNA探針接枝,觀察感測器量測miRNA所表現的敏感度與感測範圍。並透過上述實驗選出最佳條件,製備具高敏感度、高穩定度和大檢測範圍的 miRNA FET生物感測器。
    最後,以錯誤序列的樣品檢測實驗證明感測器的高選擇性。用ELISA 螢光訊號與FET電訊號的比較顯示FET生物感測器能檢測的濃度極限更低。證明miRNA FET生物感測器能直接量測miRNA原始濃度而不需透過PCR放大濃度,能有效解決現今 miRNA 檢測所面對的問題。


    Micro RNA (miRNA) has been proven as highly potent biomarkers for variety of cancers and cardiovascular diseases. Typically detection methods of miRNA use polymerase chain reaction (PCR) to amplify the miRNA concentration in the test sample. This method has the disadvantage of being time-consuming and it is unable to directly detect the original miRNA concentration. Therefore, this study intends to design a FET biosensor to detect miRNA.
    In order to design a stable and highly sensitive miRNA FET biosensor, this study used different metal deposition techniques to form sensing electrodes and observed sensor response in different temperatures and aqueous solutions to evaluate the fluctuation of the electrical signal, and found that the ions in the solution will follow the Brownian motion and cause fluctuations. While the Brownian motion reduces, the stability of the electrical signal will be improved. Then we used different concentrations of ssDNA probe to functionalize the sensor chip in order to detect target miRNA concentration, to compare the dynamic range and sensitivity. The optimization can help us to make a miRNA FET biosensor with high sensitivity, high stability and large detection range.
    Additionally, the experiments using miRNA with mismatched nucleotide sequence from the target, demonstrate the high selectivity feature of the sensor. Comparison of ELISA based fluorescent signal with FET sensor signal shows that FET biosensors can achieve better detection limits. These data proved that the miRNA FET biosensor can directly measure the original concentration of miRNA without amplifying the concentration using PCR, which can effectively solve the problems faced by miRNA detection at the present time.

    Table of Content Chapter 1 Introduction--------------------------------------------------------5 Chapter 2 Literature Review-------------------------------------------------7 2.1 miRNA as a biomarker ---------------------------------------------------7 2.2 Field effect transistor biosensor ----------------------------------------9 2.3 RNA detection method comparison-----------------------------------11 Chapter 3 Experimental------------------------------------------------------14 3.1 Extend gate Sensor chip fabrication-----------------------------------14 3.2 Test sample preparation--------------------------------------------------15 3.3 Surface functionalization-------------------------------------------------15 3.4 Field effect transistor (MOSFET)--------------------------------------16 3.5 Fluorescent probe and Fluorescence microscope-------------------16 3.6 Measurement method----------------------------------------------------17 Chapter 4 preliminary results-----------------------------------------------18 4.1 Stability test to find out the mechanism of the stability ----------18 4.2 Sensitivity and stability in different concentration DNA probe immobilization ----------------------------------------------------------------32 4.3 Sensor selectivity experiment and compare the optical signal and electrical signal -----------------------------------------------------------------41 Chapter 5 Conclusion----------------------------------------------------------58 Chapter 6 Reference----------------------------------------------------------60

    [1] K. Wakabayashi, M. Machitani, M. Tachibana, F. Sakurai, and H. Mizuguchi, "A MicroRNA Derived from Adenovirus Virus-Associated RNAII Promotes Virus Infection via Posttranscriptional Gene Silencing," Journal of Virology, vol. 93, pp. e01265-18, 01
    [2] G. Di Leva and C. M. Croce, "miRNA profiling of cancer," Current opinion in genetics & development, vol. 23, pp. 3-11, 02.
    [3] E. M. Small, R. J. Frost, and E. N. Olson, "MicroRNAs add a new dimension to cardiovascular disease," Circulation, vol. 121, pp. 1022-1032, 03
    [4] S. Lv, J. Xue, C. Wu, L. Wang, J. Wu, S. Xu, X. Liang, and J. Lou, "Identification of a panel of serum microRNAs as biomarkers for early detection of lung adenocarcinoma," Journal of Cancer, vol. 8, p. 48, 04.
    [5] H.-B. Le, W.-Y. Zhu, D.-D. Chen, J.-Y. He, Y.-Y. Huang, X.-G. Liu, and Y.-K. Zhang, "Evaluation of dynamic change of serum miR-21 and miR-24 in pre-and post-operative lung carcinoma patients," Medical oncology, vol. 29, pp. 3190-3197, 05
    [6] A. Maity, X. Sui, C. R. Tarman, H. Pu, J. Chang, G. Zhou, R. Ren, S. Mao, and J. Chen, "Pulse-driven capacitive lead ion detection with reduced graphene oxide field-effect transistor integrated with an analyzing device for rapid water quality monitoring," ACS sensors, vol. 2, pp. 1653-1661, 06.
    [7] H. Wingbrant, H. Svenningstorp, P. Salomonsson, D. Kubinski, J. H. Visser, M. Lofdahl, and A. L. Spetz, "Using a MISiC-FET sensor for detecting NH/sub 3/in SCR systems," IEEE Sensors Journal, vol. 5, pp. 1099-1105, 07
    [8] K. Shimanoe, K. Goto, K. Obata, S. Nakata, G. Sakai, and N. Yamazoe, "Development of FET-type CO2 sensor operative at room temperature," Sensors and Actuators B: Chemical, vol. 102, pp. 14-19, 08.
    [9] A. Star, J.-C. P. Gabriel, K. Bradley, and G. Grüner, "Electronic detection of specific protein binding using nanotube FET devices," Nano letters, vol. 3, pp. 459-463, 09.
    [10] S. Mao, K. Yu, G. Lu, and J. Chen, "Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor," Nano Research, vol. 4, p. 921, 10.
    [11] X. Duan, Y. Li, N. K. Rajan, D. A. Routenberg, Y. Modis, and M. A. Reed, "Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors," Nature nanotechnology, vol. 7, p. 401, 11.
    [12] K. Strimbu and J. A. Tavel, "What are biomarkers?," Current Opinion in HIV and AIDS, vol. 5, p. 463, 12.
    [13] J. K. Aronson, "Biomarkers and surrogate endpoints," British journal of clinical pharmacology, vol. 59, pp. 491-494, 13.
    [14] L. Niu, X. Song, N. Wang, L. Xue, X. Song, and L. Xie, "Tumor‐derived exosomal proteins as diagnostic biomarkers in non‐small cell lung cancer," Cancer science, vol. 110, p. 433, 14.
    [15] H.-J. Song, E.-S. Yang, J.-D. Kim, C.-Y. Park, M.-S. Kyung, and Y.-S. Kim, "Best serum biomarker combination for ovarian cancer classification," Biomedical engineering online, vol. 17, p. 152, 15.
    [16] Z. Zhang, G. M. Chew, C. M. Shikuma, L. M. A. Gangcuangco, S. A. Souza, B. Shiramizu, B. K. Nakamoto, T. Gong, S. R. Mannem, and B. I. Mitchell, "Red blood cell distribution width as an easily measurable biomarker of persistent inflammation and T cell dysregulation in antiretrovirally treated HIV-infected adults," HIV clinical trials, vol. 19, pp. 172-176, 16.
    [17] E. S. Nakou, M. E. Marketou, G. I. Chlouverakis, A. P. Patrianakos, P. E. Vardas, and F. I. Parthenakis, "Troponin‐I levels as a potential prognostic biomarker of sacubitril/valsartan treatment response in heart failure with reduced ejection fraction: Who will benefit most?," Clinical cardiology, vol. 41, pp. 1548-1554, 17.
    [18] J. Wang, J. Chen, and S. Sen, "MicroRNA as biomarkers and diagnostics," Journal of cellular physiology, vol. 231, pp. 25-30, 18.
    [19] E. M. Small, R. J. Frost, and E. N. Olson, "MicroRNAs add a new dimension to cardiovascular disease," Circulation, vol. 121, pp. 1022-1032, 19.
    [20] Y. Yang, Z. Hu, Y. Zhou, G. Zhao, Y. Lei, G. Li, S. Chen, K. Chen, Z. Shen, and X. Chen, "The clinical use of circulating microRNAs as non-invasive diagnostic biomarkers for lung cancers," Oncotarget, vol. 8, p. 90197, 20.
    [21] G. Long, F. Wang, Q. Duan, F. Chen, S. Yang, W. Gong, Y. Wang, C. Chen, and D. W. Wang, "Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction," International journal of biological sciences, vol. 8, p. 811, 21.
    [22] K. M. Akat, D. V. Moore-McGriff, P. Morozov, M. Brown, T. Gogakos, J. C. Da Rosa, A. Mihailovic, M. Sauer, R. Ji, and A. Ramarathnam, "Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers," Proceedings of the National Academy of Sciences, vol. 111, pp. 11151-11156, 22.
    [23] H. Ogata-Kawata, M. Izumiya, D. Kurioka, Y. Honma, Y. Yamada, K. Furuta, T. Gunji, H. Ohta, H. Okamoto, and H. Sonoda, "Circulating exosomal microRNAs as biomarkers of colon cancer," PloS one, vol. 9, p. e92921, 23.
    [24] J. C. Akers, V. Ramakrishnan, R. Kim, J. Skog, I. Nakano, S. Pingle, J. Kalinina, W. Hua, S. Kesari, and Y. Mao, "MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development," PloS one, vol. 8, p. e78115, 24.
    [25] Q. Geng, T. Fan, B. Zhang, W. Wang, Y. Xu, and H. Hu, "Five microRNAs in plasma as novel biomarkers for screening of early-stage non-small cell lung cancer," Respiratory research, vol. 15, p. 149, 25.
    [26] C. Bica-Pop, R. Cojocneanu-Petric, L. Magdo, L. Raduly, D. Gulei, and I. Berindan-Neagoe, "Overview upon miR-21 in lung cancer: focus on NSCLC," Cellular and molecular life sciences, vol. 75, pp. 3539-3551, 26.
    [27] Y. Li, W. Li, Q. Ouyang, S. Hu, and J. Tang, "Detection of lung cancer with blood microRNA-21 expression levels in Chinese population," Oncology letters, vol. 2, pp. 991-994, 27.
    [28] M. Igglezou, K. Vareli, G. K. Georgiou, I. Sainis, and E. Briasoulis, "Kinetics of circulating levels of miR-195, miR-155 and miR-21 in patients with breast cancer undergoing mastectomy," Anticancer research, vol. 34, pp. 7443-7447, 28.
    [29] I. Higgins and C. Lowe, "Introduction to the principles and applications of biosensors," Philosophical Transactions of the Royal Society of London. B, Biological Sciences, vol. 316, pp. 3-11, 29.
    [30] J. Li, Z. Ge, and Z. He, "Advancing membrane bioelectrochemical reactor (MBER) with hollow‐fiber membranes installed in the cathode compartment," Journal of Chemical Technology & Biotechnology, vol. 89, pp. 1330-1336, 30.
    [31] V. Khanna, A. Kumar, Y. Jain, and S. Ahmad, "Design and development of a novel high-transconductance pH-ISFET (ion-sensitive field-effect transistor)-based glucose biosensor," International Journal of Electronics, vol. 93, pp. 81-96, 31.
    [32] G. McFarland, "Microprocessor Design: A Practical Guide from Design Planning to Manufacturing Professional Engineering," McGrawHill Professional, 32.
    [33] M. Kaisti, A. Kerko, E. Aarikka, P. Saviranta, Z. Boeva, T. Soukka, and A. Lehmusvuori, "Real-time wash-free detection of unlabeled PNA-DNA hybridization using discrete FET sensor," Scientific reports, vol. 7, p. 15734, 33.
    [34] H.-Y. Park, S. R. Dugasani, D.-H. Kang, G. Yoo, J. Kim, B. Gnapareddy, J. Jeon, M. Kim, Y. J. Song, and S. Lee, "M-DNA/transition metal dichalcogenide hybrid structure-based bio-FET sensor with ultra-high sensitivity," Scientific reports, vol. 6, p. 35733, 34.
    [35] S. M. Majd and A. Salimi, "Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film," Analytica chimica acta, vol. 1000, pp. 273-282, 35.
    [36] H. Chen, J. Huang, D. Fam, and A. Tok, "Horizontally aligned carbon nanotube based biosensors for protein detection," Bioengineering, vol. 3, p. 23, 36.
    [37] Y. Chen, R. Ren, H. Pu, X. Guo, J. Chang, G. Zhou, S. Mao, M. Kron, and J. Chen, "Field-effect transistor biosensor for rapid detection of Ebola antigen," Scientific reports, vol. 7, p. 10974, 37.
    [38] E. Varkonyi-Gasic, R. Wu, M. Wood, E. F. Walton, and R. P. Hellens, "Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs," Plant methods, vol. 3, p. 12, 38.
    [39] C. Chen, D. A. Ridzon, A. J. Broomer, Z. Zhou, D. H. Lee, J. T. Nguyen, M. Barbisin, N. L. Xu, V. R. Mahuvakar, and M. R. Andersen, "Real-time quantification of microRNAs by stem–loop RT–PCR," Nucleic acids research, vol. 33, pp. e179-e179, 39.
    [40] P. Leidinger, C. Backes, S. Deutscher, K. Schmitt, S. C. Mueller, K. Frese, J. Haas, K. Ruprecht, F. Paul, C. Stähler, C. J. Lang, B. Meder, T. Bartfai, E. Meese, and A. Keller, "A blood based 12-miRNA signature of Alzheimer disease patients," Genome Biology, vol. 14, p. R78, July 29 40.
    [41] S. F. M. Häusler, A. Keller, P. A. Chandran, K. Ziegler, K. Zipp, S. Heuer, M. Krockenberger, J. B. Engel, A. Hönig, M. Scheffler, J. Dietl, and J. Wischhusen, "Whole blood-derived miRNA profiles as potential new tools for ovarian cancer screening," British Journal Of Cancer, vol. 103, p. 693, 41.
    [42] M. B. Cox, M. J. Cairns, K. S. Gandhi, A. P. Carroll, S. Moscovis, G. J. Stewart, S. Broadley, R. J. Scott, D. R. Booth, J. Lechner-Scott, and A. N. M. S. G. Consortium, "MicroRNAs miR-17 and miR-20a Inhibit T Cell Activation Genes and Are Under-Expressed in MS Whole Blood," PloS one, vol. 5, p. e12132, 42.

    QR CODE