簡易檢索 / 詳目顯示

研究生: 陳昭安
Chen, Chao-An
論文名稱: 多環燃燒器之設計與燃燒機制研究
The Design and Combustion Mechanism Investigation of a Multiple-Ring Burner
指導教授: 楊鏡堂
Yang, Jing-Tang
吳國光
Wu, Kuo-Kuang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 63
中文關鍵詞: 多環燃燒器燃燒器間距火焰長度火焰溫度二次空氣數值分析
外文關鍵詞: multi-ring burner, burner space, flame length, flame temperature, secondary air, numerical simulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要目的在探討多環燃燒器中,各環間隔距離對燃燒流場的影響,以瞭解其燃燒機制的異同。本文採用CFDRC公司所研發之CFD-ACE+套裝軟體,進行多環燃燒器流場模擬,比照各組設計之效能好壞,以做為較佳的設計依據。找到最佳設計參數後,建立實驗平台與燃燒器模型,逐一測試檢驗各參數對火焰結構及操作性能之效應,並作為未來實驗所需模型製作時的參考依據。根據執行結果歸納之設計準則,設計開發高效能之多環燃燒器。
    多環燃燒器在改變各環間距時,改變的流場及熱傳效果會直接反映在火焰特性上,進而造成火焰長度與火焰溫度的變化。由數值模擬與實驗結果可知,當燃燒器間距縮短時,火焰間的預熱效果會造成火焰溫度上升,流場溫度均勻化,但同時也會使擴散火焰增長,不利於完全燃燒。在燃燒器的調整上,適當的間距範圍會產生較佳的燃燒效果。由一步有限反應之數值模擬結果得知,當S/d值為2.33時,燃燒器具有較佳之效能表現。在二步反應之模擬結果,其火焰溫度分佈與一步反應也具有類似趨勢,但其分佈位置略有不同,較佳之效能表現落於S/d值為1.67處。
    在燃燒器的設計上,改變預混燃氣濃淡時需搭配不同的間距,以提供足夠之二次空氣並達到最佳效能。由本文結果可推論,多環燃燒器在預混燃氣當量比為1.5時,最佳之間距係數S/d值介於2~2.5之間。


    The project on multi-ring burner is focused on the effect of the distance between each ring on the combustion performance and flame stabilization mechanism. Both numerical analysis and simple experimental diagnosis have been systematically carried out. The governing equations for the combustor model are solved by a CFD-RC software. Changing the variable in simulation, the results are used to be the design basis in the future. When the distance between each ring of the burner is systematically varied, the reacting flow field and heat transfer alter drastically, and which directly affect the flame structure, flame length and flame temperature. When the burners’ gap decreases, flame temperature rises and flow temperature becomes uniform, but flame length increases. The overall effect is negative to combustion performance. The optimal value of the range between each burner and the re-distribution of the equivalence ratio result in better combustion effect. The best operating range of S/d value was around 2.33 in one-step reaction but around 1.67 in two-step reaction. In the design rule, the best design region of S/d value locates between 2 and 2.5 in the case which equivalence ratio is 1.5.

    摘 要 i 致謝 iii 圖 表 目 錄 vi 符號說明 vii 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-2.1 燃料選擇 3 1-2.2 燃燒類型 5 1-2.3 火焰模式 6 1-2.4 駐焰效果 6 1-2.5 火焰間的影響 8 1-2.6 預熱效應 9 1-2.7 二次空氣 10 1-2.8 不完全燃燒 11 1-2.9 燃燒不穩定 12 1-2.10 紊流燃燒 13 第二章 分析方法 15 2-1 主要控制參數 15 2-1.1 燃燒器幾何結構 15 2-1.2 一次空氣流量控制 16 2-1.3 燃料體積流量 16 2-2 數值模擬方法 17 2-3 實驗設備配置與實驗原理 21 2-3.1 供氣系統 21 2-3.2 影像紀錄系統 22 2-3.3 溫度量測系統 22 2-4 實驗設計 23 2-4.1 燃燒溫度場量測 23 2-4.2 穩定操作範圍的量測 23 第三章 結果與討論 24 3-1 數值模擬方法 24 3-1.1 物理模型與計算方法 24 3-1.2邊界條件 25 3-2 一步反應模擬結果 26 3-3 二步反應模擬結果 33 3-4 實驗設備架設 40 第四章 結論與未來展望 47 第五章 參考文獻 51

    Abdel-Gayed, R. G., Bradley, D., and Lawes, M., 1987, “Turbulent Burning Velocities: A General Correlation in Terms of Straining Rates,” Prof. R. Soc, Lond A, Vol. 414, pp. 389-413.
    Beer, J. N., and Chigiter, N. A., 1968, “Impinging Jet Flames,” Combustion and Flame, Vol. 12, pp. 575-586.
    Chen, R. H. and Discroll, J. F., 1988, “The Role of the Recirculation Vortex in Improving Fuel-Air Mixing within Swirling Flames,” Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 531-540.
    Chen, T. H., and Goss, L. P., 1991, “Statistical OH-Zone Structures of Turbulent Jet Flames from Liftoff to Near-Blowout,” Combustion Science and Technology, Vol. 79, pp. 311-324.
    Disimile, P. J., Savory, E., and Toy, N., 1995, “Mixing Characteristic of Twin Impinging Circular Jets,” Journal of Propulsion and Power, Vol. 11, No. 6, pp. 1118-1124.
    Domingo, P. and Vervisch, L., 1996, “Triple Flames and Partially Premixed Combustion in Autoignition of Non-premixed Turbulent Mixtures,” Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 233-240.
    Dong, L. L., Cheung, C. S., and Leung C. W., 2002, “Heat Transfer from An Impinging Premixed Butane/Air Slot Flame Jet,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 979-992.
    Eickhoff, H. and Lenze, B., 1969, “Basic Forms of Jet Flames,” Chem. Ing. Techn., Vol. 41, pp. 1095-9.
    Gollahalli, S. R., Khanna, T., and Prabhu, N., 1992, “Diffusion Flames of Gas Jets Issued from Circular and Elliptic Nozzles,” Combustion Science and Technology, Vol. 86, pp. 267-288.
    Gollahalli, S. R., and Subba, S., 1997, “Partially Premixed Laminar Gas Flame From Triangular Burners,” Journal of Propulsion and Power, Vol. 13, No. 2, pp. 226-232.
    Gutmark, E. and Schadow, K. C., 1996, “Suppression of “Buzz” Instability by Geometrical Design of the Flameholder,” AIAA Journal, Vol. 34, pp. 90-102.

    Kanury, A., 1975, Introduction to Combustion Phenomena, Gordon and Breach Science Publishers, New York, Chapter 7 & Chapter 8.
    Kawaguchi, O., Kinoshita, J., and Sato, G. T., 1985, “Premixed Flames at a Multi-Slit Burner,” 日本機械學會論文集(B篇), 51卷, 467號.
    Kostiuk, L. W., and Cheng, R. K., 1993, “Experimental Study of Premixed Turbulent Combustion in Opposed Streams,” Combustion and Flame, Vol. 92, pp. 396-409.
    Kuo, K. K., 1986, Principle of Combustion, John Wiely and Sons, New York, Chapter 5 & Chapter 6.
    Lim, J., Gore, J., and Viskanta, R., 2000, “A Study of the Effects of Air Preheat on the Structure of Methane/air Counterflow Ddiffusion Flames,” Combustion and Flame, Vol. 121, pp. 262-274.
    Lenze, B. and Milano, M. E., 1975, “The Mutual Influence of Multiple Jet Diffusion Flames,” Combustion Science and Technology, Vol. 11, pp. 1-8.
    Liou, T. M., Lee, H. L., and Liao, C. C., 2000, “Effects of Inlet Guide-vane Number on Flowfields in a Side-dump Combustor,” Experimental Thermal and Fluid Science, Vol. 24, pp. 11-23.
    Matovic, M., Oka, S., and Durst, F., 1994, “Structure of the Mean Velocity and Turbulence in Premixed Axisymmetric Acetylene Flames,” Journal of Fluids Engineering, Vol. 116, pp. 631-642.
    Maughan, J. R., 1995, “Two Stage Flames Stabilization for a Gas Burner,” United States Patent No. 5,408,984.
    Nosseir, N., Peled, U., and Hildebrand, G., 1987, “Pressure Field Generated by Jet-to-Jet Impingement” AIAA Journal, Vol. 25, pp. 1312-1317.
    Otsuka, T., Shinozaki, K., Toyoyama, K., and Ishihara, S., 1990, “Gas Burner,” United States Patent No. 4,927,356.
    Peter, N., 1986, “Laminar Flamelet Concept in Turbulent Combustion,” Twenty-first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1231-1250.
    Poinsot, T., Veyname, D., and Candel, S., 1991, “Quenching Processes and Premixed Turbulent Combustion Diagrams,” Journal of Fluid Mechanics, Vol. 288, pp. 561-602.
    Poppe, C., Sivasegaram, S., and Whitelaw, J. H., 1998, “Control of NOx Emissions in Confined Flames by Oscillations,” Combustion and Flame, Vol. 113, pp. 13-26.
    Seitzman, J. M., Paul, P. H., and Hanson, R. K., 1990, “Imaging and Characterization of OH Structures in a Turbulent Nonpremixed Flame,” Twenty-third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 637-644.
    Stwalley, R. M. and Lefebvre, A. H., 1987, “Flame Stabilization Using Large Flameholders of Irregular Shape,” Journal of Propulsion and Power, Vol. 4, pp. 4-13.
    Su, A., and Liu, Y. C. 2002, “Investigation of Impinging Diffusion Flames with Inert Gas,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 3251-3257.
    Turn, S. R., 2000, An Introduction to Combustion, Concepts and Application, McGraw-Hill International Edition, pp. 1.
    Wei, X. L., Xu, T. m., and Hui, S., 2004, “Burning Low Volatile Fuel in Tangentially Fired Furnaces with Fuel Rich/Lean Burners,” Energy Conversion and Management, Vol. 45, pp. 725-735.
    Williams, F., 1985, Combustion Theory, Second Ed., Benjamin-Cummings, Menlo Park, California, Chapter 7.
    Wu, J., Seyed-Yagoobi, J., and Paga, R. H., 2001, “Heat Transfer and Combustion Characteristic of an Array of Radial Jet Reattachment Flames,” Combustion and Flame, Vol. 125, pp. 955-964.
    Yang, J. T., Pan, K. L., and Chang, C. C., 1997, “Effects of Recirculating Annular-Air Flow on Dynamics of Wake Flame Around a Circular Disc,” Proceedings of the Sixteenth International Colloquium on the Dynamics of Explosion and Reactive Systems, Cracow, Poland, pp. 120-123.
    Yang, J. T., Yen, C. W., and Tsai, G. L., 1994, “Flame Stabilization in the Wake Flow Behind a Slit V-Gutter,” Combustion and Flame, Vol. 99, pp. 288-294.
    Ziauddin, M., Balakrishna, A., Vlachos, D. G., and Schmidt, L. D., 1997, “Ignition of Methane Flames in Oxygen Near Inert Surfaces: Effects of Composition, Pressure, Preheat, and Residence Time,” Combustion and Flame, Vol. 110, pp. 377-391.
    工業技術研究院經資中心,2004,ITIS計畫書。
    永山聡,2001,「低NOx燃燒器」,日本國特許廳公開特許公報,特開2001-074207。
    白井豐,守屋好文,原正一,1995,「燃燒器裝置」,日本國特許廳公開特許公報,特開平7-260108。
    本間六雄,1998,「濃淡燃燒裝置」,日本國特許廳公開特許公報,特開平10-176806。
    本間勉,2003,「燃燒裝置」,日本國特許廳公開特許公報,特開2003-120907。
    吳志勇,2003,噴流火焰暫態吹熄過程之行為與不穩定特性之探討,國立成功大學航空太空工程研究所博士論文。
    孫泊寧,1997,高負荷燃燒器之設計實作與火焰結構分析,國立清華大學動力機械工程學系碩士論文。
    陳相甫,1999,單/多排燃燒器之設計與實作,國立清華大學動力機械工程學系碩士論文。
    陳昭安、楊鏡堂、吳國光、鄭景亮,工研院能資所技術報告,2004
    陳福安,2000,高負荷燃燒器之火焰雷射診測與燃燒機制研究,國立清華大學動力機械工程學系碩士論文。
    亀山修司,2003,「燃燒裝置」,日本國特許廳公開特許公報,特開2003-343809。
    黃木丈俊、藤生昭,1995,「燃燒裝置」,日本國特許廳公開特許公報,特開平7-151319。
    經濟部能源局,2002,能源政策白皮書。
    楊鏡堂, 高智勇, 1999, "對流衝擊型燃燒器," 中華民國新型專利 第149086號 (專利權期間:1999/7/21~2010/6/28, 發證日期: 88/12/06; 計畫編號:NSC-87-2212-E-007-034)。
    楊鏡堂, 張家齊, 孫泊寧, 高智勇, 1999, "強制擴散型燃燒器," 中華民國新型專利 第147062號 (專利權期間:1999/5/01~2009/6/28, 發證日期;88/9/13; 計畫編號:NSC-87-0401-E-007-034)。
    楊鏡堂, 陳福安, 鄭翰昌, 2002, "具有整流裝置之高負荷氣態燃燒器," 中華民國新型專利 No. 226062 (計畫編號:NSC-89-2212-E-007-026)。
    藍斌豪,2004,多向斜衝燃燒器之衝擊效應數值分析,國立清華大學動力機械工程學系碩士論文。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE