研究生: |
陳思亭 Chen, Szu-Ting |
---|---|
論文名稱: |
英仙座分子雲中恆星形成區的磁場研究 The Magnetic Field in Star-Forming Regions of the Perseus Molecular Cloud |
指導教授: |
賴詩萍
LAI, SHIH-PING |
口試委員: |
李景輝
Chin-Fei Lee 顏士韋 Yen, Hsi-Wei |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 天文研究所 Institute of Astronomy |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 磁場 、恆星形成 、英仙座分子雲 、偏振 、BISTRO計畫 |
外文關鍵詞: | magnetic field, star formation, Perseus molecular cloud, polarization, BISTRO survey |
相關次數: | 點閱:10 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了理解磁場對恆星形成過程的影響,我們使用Davis-Chandrasekhar- Fermi(DCF)方法及其修正方法估算了英仙座分子雲中IC348、L1448、 L1455、NGC1333和B1恆星區域的磁場強度。其中,角度離散度是從JCMT所觀 測的850 μm偏振資料推導而得,而速度離散度則分別來自使用NRO觀測的N2H+ (1-0)譜線與GBT觀測的NH3 (1,1)譜線。根據DCF方法計算的平均視平面磁場強 度約為數百微高斯(μG),整體上高於其它修正方法所得到的結果。而所有方法所導出的質量通量比皆顯示從絲狀體的次臨界狀態轉變為核心中的超臨界狀態,暗示核心是在次臨界環境中形成,隨後演化為超臨界。除此之外,所有區域皆顯示出亞阿爾芬或近阿爾芬條件,表示磁場相比於湍流在這些區域更 加主導。雖然這個結果可能受到我們在角度離散度量測中排除偏振角大幅擾 動區域的影響,但這部分被排除的區域僅佔柱密度高於4×10^22 cm−2核心區域 的17.5%。為了評估磁場、重力與湍流三者的重要性,我們也計算了前恆星與原 恆星核心中三者的能量比。結果顯示,在由NH3所追蹤的較高密度區域中,重力能的比例較高,反之磁場能量佔比較低。這些發現與雙極擴散模型一致,顯示磁場強度會朝核心中心減弱,而重力則逐漸占據主導地位。
To understand the influence of magnetic fields on star formation processes, we estimated the magnetic field strength in IC348, L1448, L1455, NGC1333, and B1 of the Perseus molecular cloud using the Davis-Chandrasekhar-Fermi (DCF) method and its modified approaches. The angular dispersion was derived from 850 μm polarization data observed by the JCMT, while velocity dispersion was measured from N2H+ (1-0) and NH3 (1,1) spectral lines observed with the NRO and the GBT, respectively. The average plane-of-sky magnetic field strength calculated by the DCF method is around a few hundred μG, consistently higher than those obtained using the modified methods. Nevertheless, the observed mass-to-flux ratio with all the methods show a transition from subcritical in filaments to supercritical in the cores, suggesting that cores initially form in subcritical environments before evolving into supercritical ones. In addition, all regions exhibit sub-Alfvénic or trans-Alfvénic conditions, indicating that magnetic fields dominate over turbulence. Although these results may reflect our selection criteria in angular dispersion measurements, which exclude regions with large perturbations in polarization angles, the excluded area is only 17.5% of the core regions with column density larger than ∼ 4×10^22 cm−2. To assess the relative importance of magnetic fields, gravity, and turbulence, we also calculated these energies for prestellar and protostellar cores. Our results show that the proportion of gravitational energy is higher in the denser regions traced by NH3. These findings align with the ambipolar diffusion model, indicating a weakening magnetic field and increasing gravitational dominance toward core centers.