研究生: |
林鎮宇 Lin, Zhen Yu |
---|---|
論文名稱: |
以回覆內容為基礎之專家與領袖篩選模式 The Model for Identification of Experts and Leaders from Replies |
指導教授: |
侯建良
Hou, Jiang Liang |
口試委員: |
吳建瑋
張國浩 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 488 |
中文關鍵詞: | 回覆內容價值評估 、符合程度推論 、專家判定 、意見領袖判定 |
外文關鍵詞: | Reply Valuation, Degree of Compliance, Experts Recommendation, Opinion Leaders Recommendation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當人們於日常生活中遇到問題或決策困境時,其往往透過網際網路環境之各社群網站尋求問題之解答及具參考價值之資料(本研究稱之為具專家特質之使用者的討論或回覆內容),並進而諮詢此類具專家特質之使用者,期望此類使用者以其豐富之專業知識提供問題解答或決策參考依據。另一方面,廠商、廣告商或代理商等業者亦常透過各社群網站尋找問題討論及回覆內容中具代表性或能引起廣泛共鳴之討論及回覆(本研究稱之為具領袖特質之使用者的討論或回覆內容),並期望委託具領袖特質之使用者以其能引起廣泛共鳴之表達方式或廣闊之人脈為其產品或服務進行廣告代言或發聲,以達到銷售量或知名度提升之成效。然而,當人們或廠商等業者欲自社群網站眾多問題討論及各使用者之回覆內容中篩選具參考價值之資料或具代表性、能引起廣泛共鳴之討論及回覆時,其往往需耗費大量時間閱讀問題討論及各使用者之回覆內容。
為解決上述問題,本研究乃先透過社群網站蒐集多份問題討論及各使用者之回覆,並解析其內容中具專家或領袖特質之使用者的討論與回覆內容所包含之特性;之後,本研究乃依據此些表達特性之解析結果發展一套「專家與領袖篩選」方法。而「專家與領袖篩選」方法可區分為「表達特性擷取」、「專家與領袖程度計算」、「專家與領袖判定」等三個階段。其中,「表達特性擷取」階段主要乃先自目標問題討論中擷取各使用者之回覆內容所具備的表達特性,並計算此些表達特性之篇幅;「專家與領袖程度計算」階段乃依據第一階段所得之目標問題討論與回覆內容結構化結果,推論各使用者符合專家與領袖之符合程度;「專家與領袖判定」階段乃依據第二階段所推論之符合程度判定目標問題討論與回覆內容中具專家特質或領袖特質之使用者。
未來,人們或廠商可依據本研究所發展的方法自社群網站之眾多討論及回覆內容中篩選具專家特質或領袖特質之使用者,並與具專家特質之使用者進行諮詢或與具領袖特質之使用者進行廣告代言等合作事宜。
As one has problems or decision issues, he/she always searches for the answers and the useful information on various social networks of Internet in order to acquire advices from the users with expertise. People depend highly on these users to provide some solutions or references for decision based on their own professional knowledge. On the other hand, manufacturers, advertiser or agencies always try to find the representative opinions of replies from the discussions in the online social networks, then they could identify the users who have leadership to endorse their products or service for increasing sales or visibility. However, people and vendors have to spend a lot of time sifting the useful informations from the user's replies. In order to solve the problems, this study develops a model for experts and leaders select of reply. It can be used to recommend experts and leaders. By applying the proposed model, people and advertisers can screen of experts or leaders and consult with experts or cooperation with the leaders very quickly.
1. Akaichi, J., 2013, “Social Networks’ Facebook’ Statutes Updates Mining for Sentiment Classification,” Social Computing, pp. 886-891.
2. Alonso, O., Carson, C., Gerster, D., Ji, X. and Nabar, S., 2010, “Detecting Uninteresting Content in Text Streams,” Proceedings of SIGIR CSE Workshop, pp. 39-42.
3. André, P., Bernstein, M. S. and Luther, K., 2012, “Who Gives A Tweet?Evaluating Microblog Content Value,” Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, pp. 471-474.
4. Benny, A. and Philip, M., 2015, “Keyword Based Tweet Extraction and Detection of Related Topics,” Procedia Computer Science, Vol. 46, pp. 364-371.
5. Bodendorf, F. and Kaiser, C., 2010, “Detecting Opinion Leaders and Trends in Online Communities,” Digital Society, pp. 124-129.
6. Chen, J., Nairn, R., Nelson, L., Bernstein, M. and Chi, E. H., 2010, “Short and Tweet: Experiments on Recommending Content from Information Streams,” Proceedings of the 28th International Conference on Human Factors in Computing Systems, pp. 1185-1194.
7. Chen, Q., Yang, Y., Hu, Q. and He, L., 2014, “Locating Query-Oriented Experts in Microblog Search,” Proceedings of Workshop on Semantic Matching in Information Retrieval, pp. 16-23.
8. Duan, Y., Jiang, L., Qin, T., Zhou, M. and Shum, H. Y., 2010, “An Empirical Study on Learning to Rank of Tweets,” Proceedings of the 23rd International Conference on Computational Linguistics, pp. 295-303.
9. Efron, M., 2010, “Hashtag retrieval in a microblogging environment,” Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 787-788.
10. Ferguson, P., O'Hare, N., Lanagan, J., Phelan, O. and McCarthy, K., 2012, “An Investigation of Term Weighting Approaches for Microblog Retrieval,” Advances in Information Retrieval, Vol. 7224, pp. 552-555.
11. Fernandes, M. A., Patel, P. and Marwala, T., 2015, “Automated Detection of Human Users in Twitter,” Procedia Computer Science, Vol. 53, pp. 224-231.
12. Fu, Y., Xiang, R., Liu, Y., Zhang, M. and Ma, S., 2007, “Finding Experts Using Social Network Analysis,” Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, pp. 77-80.
13. Hung, C. and Yeh, P. W., 2014, “Identification of Opinion Leaders Using Text Mining Technique in Virtual Community,” Proceedings of the 1st Symposium on Information Management and Big Data, Vol. 1318, pp. 8-13.
14. Jennifer, G., Cristina, R., Michon, E. and Karen, T., 2011, “Predicting Personality from Twitter,” IEEE International Conference on Social Computing, pp. 149-156.
15. Juan, M. R. and Lourdes, A., 2013, “Detecting Malicious Tweets in Trending Topics Using a Statistical Analysis of Language,” Expert Systems With Applications, Vol. 40, pp. 2992-3000.
16. Kaneko, T. and Yanai, K., 2016, “Event Photo Mining from Twitter Using Keyword Bursts and Image Clustering,” Neurocomputing, Vol. 172, pp. 143-158.
17. Kardan, A., Omidvar, A. and Farahmandnia, F., 2011, “Expert Finding on Social Network with Link Analysis Approach,” Electrical Engineering, pp. 1-6.
18. Kem, Z., Benyoucef, M. and Sesia, Z., 2016, “Building Brand Loyalty in Social Commerce: The Case of Brand Microblogs,” Electronic Commerce Research and Applications, Vol. 15, pp. 14-25.
19. Li, C. T., Shan, M. K., Jheng, S. H. and Chou, K. C., 2016, “Exploiting Concept Drift to Predict Popularity of Social Multimedia in Microblogs,” Information Sciences, Vol. 339, pp. 310-331.
20. Li, X., Ma, J., Yang, Y. and Wang, D., 2013, “A Service Mode of Expert Finding in Social Network,” Service Sciences, Vol. 48, pp. 220-223.
21. Li, Y., Li, W. and Li, S., 2015, “A Hierarchical Knowledge Representation for Expert Finding on Social Media,” Proceedings of the 53nd Annual Meeting of the Association for Computational Linguistics, pp. 616-622.
22. Liang, C., Liu, Z. and Sun, M., 2012, “Expert Finding for Microblog Misinformation Identification,” Proceedings of COLING, pp. 703-712.
23. Liu, Z. and Liu, L., 2011, “Recognition and Analysis of Opinion Leaders in Microblog Public Opinions,” Systems Engineering, Vol. 29, pp. 8-16.
24. Liu, Z., Yu, W. and Chen, W., 2010, “Short Text Feature Selection for Micro-blog Mining,” Computational Intelligence and Software Engineering, pp. 1-4.
25. Massoudi, K., Tsagkias, M., Rijke, M. D. and Weerkamp, W., 2011, “Incorporating Query Expansion and Quality Indicators in Searching Microblog Posts,” Advances in Information Retrieval, Vol. 6611, pp. 362-367.
26. Matsumura, N., Ohsawa, Y. and Ishizuka, M., 2002, “Mining and Characterizing Opinion Leaders from Threaded Online Discussions,” Proceedings of the 6th International Conference on Knowledge-Based Intelligent Engineering Systems & Allied Technologies, pp. 1-4.
27. Meij, E., Weerkamp, W. and Rijke, M. D., 2012, “Adding Semantics to Microblog Posts,” Web Search and Data Mining, pp. 563-572.
28. Miao, F., Qiang, Z. and Thomas, F. Z., 2014, “Mining the Personal Interests of Microbloggers via Exploiting Wikipedia Knowledge,” Computational Linguistics and Intelligent Text Processing, Vol. 8404, pp. 188-200.
29. Nagmoti, R., Teredesai, A. and Cock, M.D., 2010, “Ranking Approaches for Microblog Search,” Web Intelligence and Intelligent Agent Technology, pp. 153-157.
30. Nebhi, K., 2012, “Ontology-Based Information Extraction from Twitter,” Proceedings of the Workshop on Information Extraction and Entity Analytics on Social Media Data, pp. 17-22.
31. Nicholas D., Mor N. and Funda K.S., 2010, “Diamonds in the Rough: Social Media Visual Analytics for Journalistic Inquiry,” Analytics Science and Technology, Vol. 29, pp. 115-122.
32. Pak, A. and Paroubek, P., 2010, “Twitter as a Corpus for Sentiment Analysis and Opinion Mining,” Seventh International Conference on Language Resources and Evaluation, pp. 1320-1326.
33. Pal, A. and Konstan, J. A., 2010, “Expert Identification in Community Question Answering: Exploring Question Selection Bias,” Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1505-1508.
34. Preethi, P. G., Uma, V. and Kumar, A., 2015, “Temporal Sentiment Analysis and Causal Rules Extraction from Tweets for Event Prediction,” Procedia Computer Science, Vol. 48, pp. 84-89.
35. Qiang, R., Liang, F. and Yang, J., 2013, “Exploiting Ranking Factorization Machines for Microblog Retrieval,” Information & Knowledge Management, pp. 1783-1788.
36. Qu, D. C., Lian, H. X., Xie, H. and Guo, S. L., 2015, “Research Methods on Recognizing Potential Opinion Leaders of Hot Event Based on Social Network,” International Conference of Electrical, Automation and Mechanical Engineering, Vol. 15, pp. 372-375.
37. Sagadevan, S., Hashimah, N., Malim, A. H. and Husin, M. H., 2015, “Sentiment Valences for Automatic Personality Detection of Online Social Networks Users Using Three Factor Model,” Procedia Computer Science, Vol. 72, pp. 201-208.
38. Shah, C. and Pomerantz, J., 2010, “Evaluating and Predicting Answer Quality in Community QA,” Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 411-418.
39. Siqi Z., Lin Z., Jehan W. and Venu V., 2010, “Analyzing Twitter for Social TV: Sentiment Extraction for Sports,” FutureTV Workshop, Vol. 720, pp. 140-145.
40. Song, X., Chi, Y., Hino, K. and Tseng, B. L., 2007, “Identifying Opinion Leaders in the Blogosphere,” Proceedings of the 16th ACM Conference on Conference on Information and Knowledge Management, pp. 971-974.
41. Vidya, N. A., Fanany, M. I. and Budi, I., 2015, “Twitter Sentiment to Analyze Net Brand Reputation of Mobile Phone Providers,” Procedia Computer Science, Vol. 72, pp. 519-526.
42. Vosecky, J., Leung, K. W. and Ng, W., 2012, “Searching for Quality Microblog Posts: Filtering and Ranking Based on Content Analysis and Implicit Links,” DASFAA, Vol. 7238, pp. 397-413.
43. Wanas, N., Saban, M. E., Ashour, H. and Ammar, W., 2008, “Automatic Scoring of Online Discussion Posts,” Proceedings of the 2nd ACM Workshop on Information Credibility on the Web, pp. 19-26.
44. Wayne, X. Z., Jing J., Jing, H., Yang, S., Palakorn, A., Ee, P. L. and Xiaoming, L., 2011, “Topical Keyphrase Extraction from Twitter,” Computational Linguistics: Human Language Technologies, pp. 379-388.
45. Weilin, L. and Hoon, G. K., 2015, “Personalization of Trending Tweets using Like-Dislike Category Model,” Procedia Computer Science, Vol. 60, pp. 236-245.
46. Weimer, M., Gurevych, I. and Muhlhauser, M., 2007, “Automatically Assessing the Post Quality in Online Discussions on Software,” Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pp. 125-128.
47. Xu, H., Yang, W. and Wang, J., 2015, “Hierarchical Emotion Classification and Emotion Component Analysis on Chinese Micro-blog Posts,” Expert Systems With Applications, Vol. 42, pp. 8745-8752.
48. Xu, Z. and Ramanathan, J., 2016, “Thread-Based Probabilistic Models for Expert Finding in Enterprise Microblogs,” Expert Systems With Applications, Vol. 43, pp. 286-297.
49. Ying, L. and Jiajun, Y., 2015, “Improving Ranking-based Recommendation by Social Information and Negative Similarity,” Procedia Computer Science, Vol. 55, pp. 732-740.
50. Yoon, S., Elhadad, N. and Bakken, S., 2013, “A Practical Approach for Content Mining of Tweets,” Preventive Medicine, Vol. 45, pp. 122-129.
51. Yu, X., Wei, X. and Lin, X., 2010, “Algorithms of BBS Opinion Leader Mining Based on Sentiment Analysis,” Web Information Systems and Mining, Vol. 6318, pp. 360-369.
52. Yue, H. and Jinxiu, T., 2015, “Study on SINA Micro-blog Personalized Recommendation Based on Semantic Network,” Expert Systems With Applications, Vol. 42, pp. 4797-4804.
53. Zhai, Z., Xu, H. and Jia, P., 2008, “Identifying Opinion Leaders in BBS,” Web Intelligence and Intelligent Agent Technology, Vol. 3, pp. 398-401.
54. Zhang, J., Tang, J. and Li, J., 2007, “Expert Finding in A Social Network,” Proceedings of the 12th International Conference on Database Systems for Advanced Applications, Vol. 4443, pp. 1066-1069.
55. Zhang, W., Li, X., He, H. and Wang, X., 2014, “Identifying Network Public Opinion Leaders Based on Markov Logic Networks,” The Scientific World Journal, pp. 1-8.
56. Zhenhui, L., Ding, Z., Yun, F.J. and Jiawei, H., 2010, “Keyword Extraction for Social Snippets,” Proceedings of the 19th International Conference on World Wide Web, pp. 1143-1144.
57. Zhu, Z., Bernhard, D. and Gurevych, I., 2009, “A Multi-Dimensional Model for Assessing the Quality of Answers in Social Q&A Sites,” Technical Report, Vol. 156, pp. 1-13.
58. Zingla, M. A., Chiraz, L., Slimani, Y. and Berrut, C., 2015, “Statistical and Semantic Approaches for Tweet Contextualization,” Procedia Computer Science, Vol. 60, pp. 498-507.