研究生: |
游博超 You, Bo-Chao |
---|---|
論文名稱: |
細流道充填過程之噴泉流研究 Fountain flow in the filling process inside a small channel |
指導教授: |
李雄略
Lee, Shong-Leih |
口試委員: |
陳志臣
Chen, Jyh-Chen 傅武雄 Fu, Wu-Shung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 細流道噴泉流 、動態接觸角 、自由液面曲率計算 、充填過程 |
外文關鍵詞: | Fountain flow inside a small channel, Dynamic contact angle, Free surface curvature calculation, Filling process |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文將進行二維細流道充填過程的噴泉流研究以及分別探討主導流場的幾個無因次參數的變化對充填過程中自由液面形狀和速度壓力場造成的影響,其中包括雷諾數、毛細數及接觸角,對於噴泉流這類的問題,因為在液氣交界面上,力平衡方程式的表面張力項和交界面形狀曲率相關,然而過去對於自由液面的曲率計算並沒有一個簡單有效的計算方法,而對於細流道的噴泉流,充填過程自由液面可將其視為近似球面形狀,因此本文提出以最小平方誤差法去計算自由液面曲率,透過此數值方法,在充填過程的每一個時間去重新計算一通過自由液面的圓,並將其曲率提供給力平衡方程式的表面張力項,進而得到兩相壓力差,藉此數值方法得到一均勻分布的自由液面壓力。
Two-dimensional fountain flow in the filling process inside a small channel is studied in this thesis. In addition, variation of a group of dimensionless parameters which dominate the free surface meniscus and flow field in the filling process are discussed respectively as well, including Reynold number, Capillary number, and the Contact angle. For a fountain flow problem, the surface tension term in force balance equation is highly related to the free surface curvature on liquid-air interface, however, there isn’t a simple and effective method for the curvature calculation on free surface in the past. For a fountain flow inside a channel, free surface shape can be approximately regarded as a circle, thus, a least square method is proposed in this thesis to handle the curvature calculation on free surface. By this numerical method, a best fitting circle is calculated according to the present free surface shape in filling process at every time step. After that, it provides a curvature to surface tension term in force balance equation, and then we get the two-phase pressure difference between liquid-air interface. Lastly, a uniform free surface pressure is properly estimated through this numerical method.
[1]. W. Rose, Fluid-fluid interfaces in steady motion, Nature 191 (1961), 242-243.
[2]. D. J. Coyle, J. W. Blake, and C. W. Macosko, The kinematics of fountain flow in mold filling, AIChE Journal, 33(1987), 1168-1177.
[3]. S.L. Lee, W.C. Liao, Numerical simulation of a fountain flow on nonstaggered Cartesian grid system, Int. J. Heat Mass Transfer,
51(2008), 2433-2443.
[4]. S.L. Lee, S.R. Sheu, Filling process in an open tank, ASME J. Fluids Eng. 125(2003), 1016-1021.
[5]. H. Mavridis, A. Hrymak, J. Vlachopoulos, Finite element simulation of fountain flow in injection molding, Polym. Eng. Sci. 26(1986), 449-454.
[6]. S. D. Lee, Free surface of a mold flow in mold-filling process, Master’s thesis, Nation Tsing Hua University(2016).
[7]. S.L. Lee, S.R. Sheu, A new numerical formulation for incompressible viscous free surface flow without smearing the free surface, International Journal of Heat and Mass Transfer, Vol.44 (2001), 1831-1848.
[8]. S. L. Lee, A strongly implicit solver for two-dimensional elliptic differential equations, Numerical Heat Transfer, Vol.16, 161-178(1989).
[9]. S. L. Lee, Weighting function scheme and its application on multidimensional conservation equations, International Journal of Heat and Mass Transfer,Vol.32,2065–2073(1989).
[10]. S. L. Lee and R. Y. Tzong, Artificial pressure for pressure-linked equation, International Journal of Heat and Mass Transfer, Vol.35, 2705-2716(1992).
[11]. W. Rose, R. W. Heins, Moving interfaces and contact angle rate-dependency, Journal of Colloid Science, 17(1962), 39-48.
[12]. C.G. Gogos, C.F. Huang, The process of cavity filling including the fountain flow in injection molding, Polym. Eng. Sci. 26(1986), 1457-1466.
[13]. M.R. Kamal, E. Chu, P.G. Lafleur, Computer simulation of injection mold filling for viscoelastic melts with fountain flow, Polym. AIChE Journal, 34(1988), 190-196.
[14]. R.A. Behrens, M.J. Crochet, C.D. Denson, A.B. Metzner, Transient free-surface flows: motion of a fluid advancing in a tube, AIChE Journal, 33(1987), 1178-1186.
[15]. Ngan, C. G. and Dussan V., E. B., “The moving contact line with 180o advancing contact angle,” Phys. Fluids, 27(1984), 2785-2787.
[16]. H. Mavridis, A.N. Hrymak, J. Vlachopoulos, Transient free-surface flows in injection model filling, AIChE Journal, 34 (1988), 403-410.
[17]. M.R. Kamal, S.K. Goyal, E. Chu, Simulation of injection mold
filling of viscoelastic polymer with fountain flow, AIChE Journal,34(1988), 94-106.
[18]. S.L. Lee, R.Y. Tzong, An enthalpy formulation for phase change problems with a large thermal diffusivity jump across the interface, Int. J. Heat Mass Transfer, 34(1991), 1491-1502.
[19]. Y.Y. Chou, W.H. Yang, A.J. Giacomin, and A.J. Hade, 2008, “3D Numerical Simulation Investigating the Effect of Volumetric Flow Rate on Core Deflection”, SPE-ANTEC Tech. Papers, Vol. 390.
[20]. R.Y. Chang, A.Y. Peng and W.H. Yang, 2006, “Mold deformation effects on ultra-thin wall injection-molded parts”, SPE-ANTEC Tech. Papers.
[21]. R.Y. Chang and W.H. Yang, 2001, “A Novel Three-Dimensional Analysis of Polymer Injection Molding”, SPE-ANTEC Tech. Papers, Vol. 740.
[22]. A.J. Giacomin and A.J. Hade, “Core Deflection in Injection Molding”, 461, Advanced Forming Technology, 2005.
[23]. S.L. Lee and C.R. Ou, 1999, “Integration Scheme for Elastic Deformation and Stresses”, ASME Journal of Applied Mechanics, Vol. 66, pp. 978-985.
[24]. K. W. Chen, Implicit Virtual Boundary Method for Moving Boundary Problems on Non-Staggered Cartesian Grid System, Master’s thesis, Nation Tsing Hua University(2013).
[25]. G. S. Cyue, Implicit Virtual Boundary Method for Moving Flat Plates of Zero Thickness, Master’s thesis, Nation Tsing Hua University(2013).